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Constrained Stochastic Shortest Path Problems (CSSPs): Posterchild Example

® Shortest Path:
reduce fuel

Fuel Bum: 30983 T
Rel. Convection: 39.0

® Stochastic:
weather

® (Constrained:
time windows

el Burn: 40129
el Eomecion 1180

[GeiBer et al., 2020]
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Probabilistic PDDL

(:action move-plane

:parameters(...) :precondition(...)
:effect(probabilistic 0.5 (...)
0.5 (...)))

calarised SSPs Experiments Summar

(Unconstrained) SSPs

SSP S = (S, s0,G,A, P, C)
e S states
® 5y initial state
G goals
A actions
P probability transition
C cost

Probability Transition Matrix for P

s Ss1 &
50, 40 0.5 0.5
S0, d1 0.5 0.5
S1, a2 1
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Policies for (Unconstrained) SSPs

Optimal Policies

Deterministic 7 : S — A

® |ead to goal with probability 1
® minimise cost (over expectation)
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Can be solved efficiently with backup-based heuristic search
¢ iLAO* [Hansen and Zilberstein, 2001]
e LRTDP [Bonet and Geffner, 2003]
® CG-iLAO* [Schmalz and Trevizan, 2024] ¥ we will use this
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Constrained SSPs

CSSP C = (S, ,G,A, P, C, i)
® cost vector C(a) € RZH
® upper bound vector 4 € R%,

Policies must satisfy Cj(7) < u;
fori=1,...,n
(over expectation)
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Policies for Constrained SSPs

Graph Y Optimal Poiicie

® |ead to goal with probability 1

® minimise primary cost Cy
(over expectation)

e satisfy Cj(m) < u; for secondary costs
(over expectation)

May be stochastic 7 : S — distr(A)

V.

71'*(50, ao) =0.5 7'('*(50, 31) =05

Costs:
e Co(n*)=05-2405-15=1.75
L4 Cl(ﬂ'*) =1<1

) = = ==
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Can be solved efficiently with heuristic search using Linear Programs (LPs)
® i-dual [Trevizan et al., 2016]
e i?-dual [Trevizan, Thiébaux, and Haslum, 2017]

In this paper: solve CSSPs via a sequence of unconstrained SSPs!

Same approach has been used for similar problems; but not for solving CSSPs optimally



Idea of CARL Solving Scalarised SSPs Experiments Summar

[ Jejele]

Our algorithm CARL: solves CSSPs via a sequence of SSPs with scalarisation

Scalarisation with X
Takes CSSP C = (S,5,G,A,P,C,ii) and XeRZ,
Gives SSP S(X)  with scalar cost Cs(a) = Go(a) + )\1(C1(a) — ul) +...

U1:1
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Our algorithm CARL: solves CSSPs via a sequence of SSPs with scalarisation

Scalarisation with X
Takes CSSP C = (S,5,G,A,P,C,d) and X€RY,
Gives SSP S(X)  with scalar cost Cs(a) = Go(a) + >\1(C1(a) — ul) +...

-

Solving S(A)
S(X) is an SSP
IE"  can be solved with SSP algo’s, e.g., CG-iLAO* [Schmalz and Trevizan, 2024]

IZ" it has an optimal deterministic policy
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Let L(X) = min, C(m)  let's plot L(X) as X varies

For us: x(m)=2-X
CX(ﬂ—l) =15+ )\

1.75

Important Fact
We get the CSSP’s opt. policy

—

1 o from maxs L(X) (kind of)
Co(7*) for CSSP at max

see Lagrangian Duality
e.g., [Hong and Williams, 2023; Lee et al., 2018]

A1

I

o
I
[ay

A1



Idea of CARL
000®

How do we find the max? Co(m*) = L(X*) = maxsy L(X)?

Answer: variant of subgradient descent (following [Hong and Williams, 2023])

Getting the Subgradient

Solve S(X) —» 7} is opt. policy

then subgrad. is
[G(75) — v - Calmg) — ]
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CARL solves many S(X)s . . . that needs to be fast!

-

How can we solve S(\)s fast?

-

Observation: S(\)s are similar

Solution: CG-iLAO* with warm starts
(that is, use info. from prev. solns.)

¢ CG-iLAO* is old [Schmalz and Trevizan, 2024]
® warm starts have been considered for iLAO* [Hong and Williams, 2023]

® warm starts for CG-iLAO* are new
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CG-iLAO* Warm Starts

1. Reuse the search tree

2. Reuse Value Function V
I¥"  bad: doing this naively makes CG-iLAO* non-optimal (V inadmissible)

IF"  fix: let CG-iLAO* handle it
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CG-iLAO*'s Value Function (aka cost-to-go)

Bellman backup

V(s) + min C(a) + Z P(s'|s,a) - V(s)

Issue: what if V changes and an action becomes important?

Fix: track changes in ' and check actions whose Q-values affected
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Reusing CG-iLAO*’s Value Function

— —

Vold = Xold : \7 — >\new -V = Vnew

Issue: Ve might be inadmissible and heuristic search
requires admissible V' ...

Fix: track changes in I and let CG-iLAO* handle it!
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Summary of Experiments

CARL is fast

e CARL solves 1264 / 1290 problems (next best 808)
® CARL has an average 10x speedup
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CARL i-dual i2-dual
A-ROC A-LMcut C-ROC IP-LMcut
4,3, .75 30 104.1+ 51.0/30 45.8+ 21.1|30 69.2+ 56.4
_;» 4,4, .75 5 1345.7+534.1| 9 979.8£296.6| 8 495.5+417.8
= 5 3,.50 30 251+ 8530 13.1+ 4.6|30 11.1+ 4.0
E 5,3,.75 30 253.8+£110.6/30 113.3+ 46.0{30 168.0£105.9
X 5.4,.50 17 695.0£268.5|24 550.6+£166.1|27 637.84+213.1
5 4, .75 6 930.94+369.3| 6 499.24+226.4| 8 349.1+288.1
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CARL

A-ROC

A-LMcut

i-dual

C-ROC

IP-LMcut

i2-dual
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9.7
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13

0.3
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5.4
0.3

30 126.2+ 9.1
30 47.1+ 25
0
30 1537.7+72.8
0
0
0
26 1508.9+68.9
0
29 1375.14+89.9
0
30 1298.1+55.3

30 103.1£2.4
30 42.1£1.38
0

O O OO OO o oo

3 801.5+536.2
3 665.94+308.3
0

O O O oo

more domains in paper




® CARL solves a sequence of SSPs to solve the CSSP via scalarisation
® use CG-iLAO* to solve SSPs efficiently with warm starts
e CARL is fast: solves 1264 / 1290 (next best 808)

\,

What | didn't cover in the talk
® how do we extract an optimal stochastic policy from the optimal deterministic
policies for S(X*)?
* how do we find all opt. det. policies for S(A*)?
® how do we get admissible heuristics?
® more details. ..

€

schmlz.github.io/carl



https://schmlz.github.io/carl/
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Scalarisation X — SSP S(X) with Cs(m) = Go(m) + Al(Cl(w) — ul) +...

L(X) “““---‘
Tt Facts:
e, IOttt @ gradient <0 <= constr' v’
® Co(m) = intersect vertical axis
© Stochastic 7 looks like. . .
1 0

A =0 A=1
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Scalarisation X — SSP S(X) with Cs(m) = Go(m) + Al(Cl(w) — ul) +...
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Facts:
@ gradient <0 <= constr' v

® Co(m) = intersect vertical axis

©® Stochastic 7 looks like. ..
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Scalarisation X — SSP S(X) with Cs(m) = Go(m) + Al(Cl(w) — ul) +...

L(X) “““---‘
,.-'-“" Facts:

2 [, “..--“' ® gradient <0 <= constr' v
7 ® Co(m) = intersect vertical axis
1.5

© Stochastic 7 looks like. . .
™ o

A =0 AM=1
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How can we find the max?

N
7b

™0 1 2 T3

A1

Il
o

A=1
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