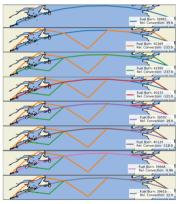
Solving Constrained Stochastic Shortest Path Problems with Scalarisation

Johannes Schmalz, Felipe Trevizan

October 28, 2025

Constrained Stochastic Shortest Path Problems (CSSPs): Posterchild Example



Intro

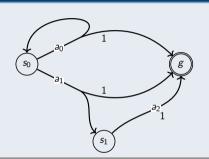
[Geißer et al., 2020]

Leal, Sebastian O. (2014, March 29). Airbus A380 — demo flight at FIDAE 2014 Wikimedia Commons. License: CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File Airbus A380 FIDAE 2014.ipg

CSSP

- Shortest Path: reduce fuel
- Stochastic: weather
- Constrained: time windows

(Unconstrained) SSPs



Probabilistic PDDL

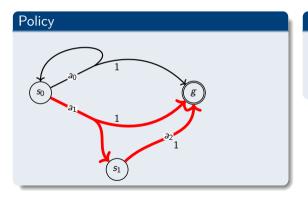
Tuple

 $SSP S = \langle S, s_0, G, A, P, C \rangle$

- S states
- s₀ initial state
- G goals
- A actions
- P probability transition
- C cost

Probability Transition Matrix for P

Policies for (Unconstrained) SSPs



Optimal Policies

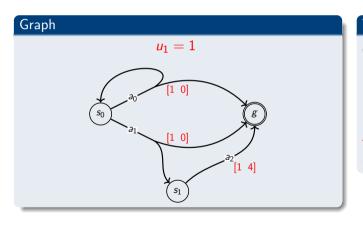
Deterministic $\pi: S \rightarrow A$

- lead to goal with probability 1
- minimise cost (over expectation)

Can be solved efficiently with backup-based heuristic search

- iLAO* [Hansen and Zilberstein, 2001]
- LRTDP [Bonet and Geffner, 2003]
- CG-iLAO* [Schmalz and Trevizan, 2024] we will use this

Constrained SSPs



Tuple

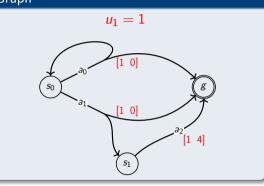
$$\mathsf{CSSP} \ \mathbb{C} = \langle \mathsf{S}, \mathsf{s}_0, \mathsf{G}, \mathsf{A}, P, \vec{\boldsymbol{C}}, \vec{\boldsymbol{u}} \rangle$$

- cost vector $\vec{C}(a) \in \mathbb{R}^{n+1}_{\geq 0}$
- upper bound vector $\vec{u} \in \mathbb{R}^n_{\geq 0}$

Policies must satisfy $C_i(\pi) \le u_i$ for i = 1, ..., n (over expectation)

Policies for Constrained SSPs

Graph



Optimal Policies

- lead to goal with probability 1
- minimise primary cost C₀ (over expectation)
- satisfy $C_i(\pi) \le u_i$ for secondary costs (over expectation)

May be **stochastic** $\pi : S \rightarrow distr(A)$

Policy

$$\pi^*(s_0, a_0) = 0.5 \quad \pi^*(s_0, a_1) = 0.5 \quad \dots$$

Costs:

- $C_0(\pi^*) = 0.5 \cdot 2 + 0.5 \cdot 1.5 = 1.75$
- $C_1(\pi^*) = 1 \leq 1$

Can be solved efficiently with heuristic search using Linear Programs (LPs)

- i-dual [Trevizan et al., 2016]
- i²-dual [Trevizan, Thiébaux, and Haslum, 2017]

In this paper: solve CSSPs via a sequence of unconstrained SSPs!

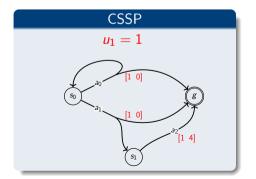
Same approach has been used for similar problems; but not for solving CSSPs optimally

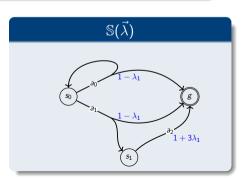
Our algorithm CARL: solves CSSPs via a sequence of SSPs with scalarisation

Scalarisation with $\vec{\lambda}$

Takes CSSP
$$\mathbb{C} = \langle \mathsf{S}, \mathsf{s}_0, \mathsf{G}, \mathsf{A}, P, \vec{C}, \vec{u} \rangle$$
 and $\vec{\lambda} \in \mathbb{R}^n_{>0}$

Gives SSP
$$\mathbb{S}(\vec{\lambda})$$
 with scalar cost $C_{\vec{\lambda}}(a) = C_0(a) + \lambda_1 \left(C_1(a) - u_1\right) + \dots$





Scalarisation with $\vec{\lambda}$

Takes CSSP $\mathbb{C} = \langle S, s_0, G, A, P, \vec{C}, \vec{u} \rangle$ and $\vec{\lambda} \in \mathbb{R}^n_{\geq 0}$

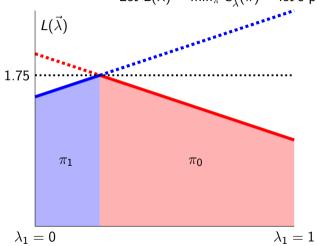
Gives SSP $\mathbb{S}(\vec{\lambda})$ with scalar cost $C_{\vec{\lambda}}(a) = C_0(a) + \lambda_1 \Big(C_1(a) - u_1\Big) + \dots$

Solving $\mathbb{S}(\vec{\lambda})$

 $\mathbb{S}(\vec{\lambda})$ is an SSP

can be solved with SSP algo's, e.g., CG-iLAO* [Schmalz and Trevizan, 2024]

it has an optimal deterministic policy



For us:
$$\begin{cases} C_{\vec{\lambda}}(\pi_0) = 2 - \lambda_1 \\ C_{\vec{\lambda}}(\pi_1) = 1.5 + \lambda_1 \end{cases}$$

Important Fact

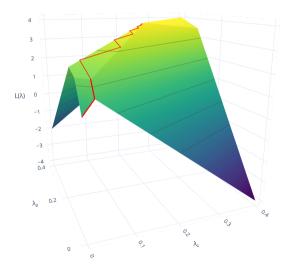
We get the CSSP's opt. policy from $\max_{\vec{\lambda}} L(\vec{\lambda})$ (kind of)

 $C_0(\pi^*)$ for CSSP at max

see Lagrangian Duality
e.g., [Hong and Williams, 2023; Lee et al., 2018]

How do we find the max?
$$C_0(\pi^*) = L(\vec{\lambda}^*) = \max_{\vec{\lambda}} L(\vec{\lambda})$$
?

Answer: variant of subgradient descent (following [Hong and Williams, 2023])



Getting the Subgradient

Solve $\mathbb{S}(\vec{\lambda}) \longrightarrow \pi^*_{\vec{\lambda}}$ is opt. policy

then subgrad. is

$$[C_1(\pi_{\vec{\lambda}}^*)-u_1 \cdots C_n(\pi_{\vec{\lambda}}^*)-u_n]$$

CARL solves many $\mathbb{S}(\vec{\lambda})$ s ... that needs to be fast!

How can we solve $\mathbb{S}(\vec{\lambda})$ s fast?

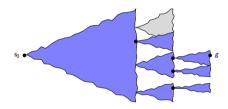
Observation: $\mathbb{S}(\vec{\lambda})$ s are similar

Solution: CG-iLAO* with warm starts (that is, use info. from prev. solns.)

- CG-iLAO* is old [Schmalz and Trevizan, 2024]
- warm starts have been considered for iLAO* [Hong and Williams, 2023]
- warm starts for CG-iLAO* are new

CG-iLAO* Warm Starts

1. Reuse the search tree



2. Reuse Value Function V

 \square bad: doing this naïvely makes CG-iLAO* non-optimal (V inadmissible)

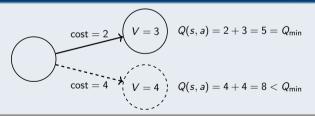
fix: let CG-iLAO* handle it

CG-iLAO*'s Value Function (aka cost-to-go)

Bellman backup

$$V(s) \leftarrow \min_{a} \underbrace{C(a) + \sum_{s'} P(s'|s, a) \cdot V(s')}_{Q(s,a)}$$

CG-iLAO*'s trick: ignore a if there is a better action $Q_{min} < Q(s, a)$



Issue: what if V changes and an action becomes important?

Fix: track changes in Γ and check actions whose Q-values affected.

Reuse V

$$V_{\mathsf{old}} = \vec{\lambda}_{\mathsf{old}} \cdot \vec{V} \quad \longrightarrow \quad \vec{\lambda}_{\mathsf{new}} \cdot \vec{V} = V_{\mathsf{new}}$$

Issue: V_{new} might be inadmissible and heuristic search requires admissible V . . .

Fix: track changes in Γ and let CG-iLAO* handle it!

Summary of Experiments

CARL is fast

- CARL solves 1264 / 1290 problems (next best 808)
- CARL has an average 10× speedup

				CARL						i-dual						i2-dual		
					λ -ROC			λ -LMcut	:		C-ROC			IP-LMcut				
SAR (n, d,	4, 3	3, .	75	30	5.6±	1.4	30	4.3±	1.0	30	$104.1\pm$	51.0	30	45.8± 21.1	30	69.2± 56.4		
	4, 4	4, .	75	30	$41.9 \pm$	5.3	30	$34.1\pm$	4.2	5	1345.7 ± 5	34.1	9	979.8 ± 296.6	8	495.5 ± 417.8		
	5, 3	3, .	50	30	$4.9\pm$	0.9	30	$4.8 \pm$	1.1	30	$25.1 \pm$	8.5	30	$13.1\pm$ 4.6	30	$11.1\pm$ 4.0		
	5, 3	3, .	75	30	$12.3\pm$	2.5	30	$13.3\pm$	2.9	30	253.8 ± 1	10.6	30	13.1 ± 4.6 113.3 ± 46.0	30	168.0 ± 105.9		
	5, 4	4, .	50	30	$30.8 \pm$	6.8	30	$36.2 \pm$	7.9	17	695.0 ± 2	68.5	24	$550.6 {\pm} 166.1$	27	637.8 ± 213.1		
0,	5, 4	4, .	75	30	$126.6 \pm$	45.2	30	142.5±4	19.3	6	930.9 ± 3	69.3	6	499.2 ± 226.4	8	349.1 ± 288.1		

		CARL							i-dual					i2-dual		
			$\lambda ext{-ROC}$			λ -LMcut	t		C-ROC		- 1	P-LMcut				
	0.0, 1	30	311.2±1	3.6	30	270.9±	8.3	30	$126.2\pm$	9.1	30	103.1±2.4	30	42.8±	3.1	
	0.0, ∞	30	$100.7 \pm$	8.0	30	$141.3 \pm$	1.0	30	$47.1 \pm$	2.5	30	42.1 ± 1.8	30	$29.5 \pm$	1.8	
	0.2, 1	30	$600.7 \pm$	3.6	30	$863.4 \pm$	9.7	0			0		30	$65.1 \pm$	11.1	
	0.2, ∞	30	$121.7 \pm$	1.9	30	$185.7 \pm$	1.2	30	1537.7±7	72.8	0		30	41.7±	4.9	
			882.8±3								0		3	801.5±5	36.2	
(f	0.4, ∞	30	130.9±	2.5	30	$188.1 \pm$	1.3	0			0		3	665.9±3	8.808	
RC	0.6, 1	30	318.4 ± 1	0.3	30	255.4±	6.9	0			0		0			
PA	0.6, ∞	30	25.5±	0.5	30	$39.6\pm$	0.3	26	1508.9±6	58.9	0		0			
			$345.5 \pm$								0		0			
	0.8, ∞	30	25.7±	0.6	30	$39.8\pm$	0.3	29	1375.1±8	39.9	0		0			
	1.0, 1	30	208.1±	6.8	30	$226.0 \pm$	5.4	0			0		0			
	1.0, ∞	30	25.6±	0.6	30	$39.6\pm$	0.3	30	1298.1±5	55.3	0		0			

more domains in paper

Background: CSSPs & Policies Idea of CARL Solving Scalarised SSPs Experiments **Summary** References

Summary

- CARL solves a sequence of SSPs to solve the CSSP via scalarisation
- use CG-iLAO* to solve SSPs efficiently with warm starts
- CARL is **fast**: solves 1264 / 1290 (next best 808)

What I didn't cover in the talk

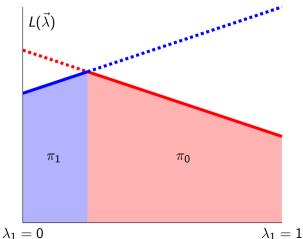
- how do we extract an optimal stochastic policy from the optimal deterministic policies for $\mathbb{S}(\vec{\lambda}^*)$?
- how do we find **all** opt. det. policies for $\mathbb{S}(\vec{\lambda}^*)$?
- how do we get admissible heuristics?
- more details...

schmlz.github.io/carl

- Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming. In *Proc. of Int. Conf. on Automated Planning and Scheduling (ICAPS)*, 12–21.
- Geißer, F.; Povéda, G.; Trevizan, F.; Bondouy, M.; Teichteil-Königsbuch, F.; and Thiébaux, S. 2020. Optimal and Heuristic Approaches for Constrained Flight Planning under Weather Uncertainty. *Proc. of Int. Conf. on Automated Planning and Scheduling (ICAPS)*, 384–393.
- Hansen, E.; and Zilberstein, S. 2001. LAO*: A heuristic search algorithm that finds solutions with loops. *Artificial Intelligence*, 35–62.
- Hong, S.; and Williams, B. C. 2023. An anytime algorithm for constrained stochastic shortest path problems with deterministic policies. *Artificial Intelligence*, 103846.
- Lee, J.; Kim, G.-h.; Poupart, P.; and Kim, K.-E. 2018. Monte-Carlo Tree Search for Constrained POMDPs. In *Advances in Neural Information Processing Systems* (NIPS).

- Schmalz, J.; and Trevizan, F. 2024. Efficient Constraint Generation for Stochastic Shortest Path Problems. *Proc. of AAAI Conf. on Artificial Intelligence*, 20247–20255.
- Trevizan, F.; Thiébaux, S.; Santana, P.; and Williams, B. 2016. Heuristic Search in Dual Space for Constrained Stochastic Shortest Path Problems. In *Proc. of Int. Conf. on Automated Planning and Scheduling (ICAPS)*, 326–334.
- Trevizan, F.; Thiébaux, S.; and Haslum, P. 2017. Occupation Measure Heuristics for Probabilistic Planning. In *Proc. of Int. Conf. on Automated Planning and Scheduling (ICAPS)*, 306–315.

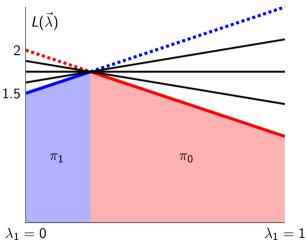
Scalarisation $\vec{\lambda} \longrightarrow \mathsf{SSP} \ \mathbb{S}(\vec{\lambda})$ with $C_{\vec{\lambda}}(\pi) = C_0(\pi) + \lambda_1 \Big(C_1(\pi) - u_1 \Big) + \dots$



Facts:

- **1** gradient \leq 0 \iff constr' ✓
- 2 $C_0(\pi) = \text{intersect vertical axis}$
- 3 Stochastic π looks like...

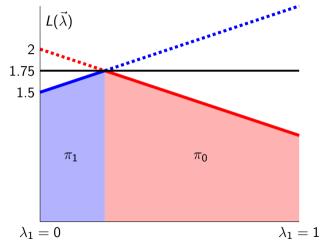
Scalarisation $\vec{\lambda} \longrightarrow \mathsf{SSP} \ \mathbb{S}(\vec{\lambda})$ with $\ C_{\vec{\lambda}}(\pi) = C_0(\pi) + \lambda_1 \Big(C_1(\pi) - u_1 \Big) + \dots$



Facts:

- **1** gradient $\leq 0 \iff \text{constr'} \checkmark$
- 2 $C_0(\pi) = \text{intersect vertical axis}$
- 3 Stochastic π looks like...

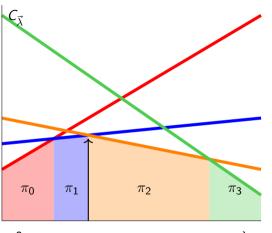
Scalarisation $\vec{\lambda} \longrightarrow \mathsf{SSP} \ \mathbb{S}(\vec{\lambda})$ with $\ C_{\vec{\lambda}}(\pi) = C_0(\pi) + \lambda_1 \Big(C_1(\pi) - u_1 \Big) + \dots$



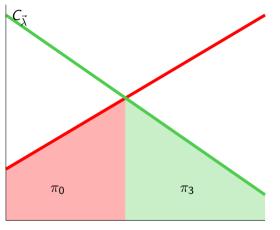
Facts:

- **1** gradient $\leq 0 \iff \text{constr'} \checkmark$
- 2 $C_0(\pi) = \text{intersect vertical axis}$
- 3 Stochastic π looks like...

How can we find the max?

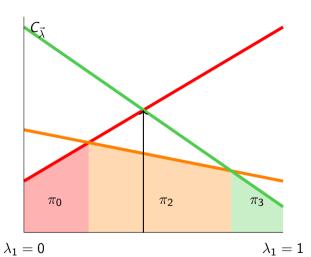


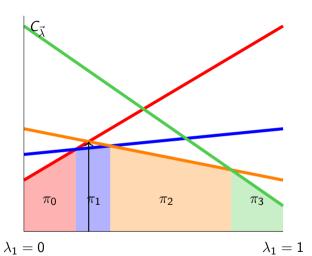
$$\lambda_1 = 0$$
 $\lambda_1 = 1$

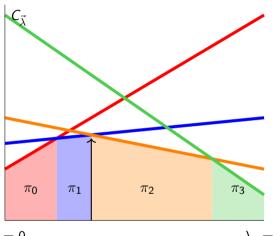


$$\lambda_1 = 0$$

$$\lambda_1 = 1$$







$$\lambda_1 = 0$$
 $\lambda_1 = 1$