Probabilistic Replanning with Guarantees — Dissertation Abstract

Johannes Schmalz

School of Computing, Australian National University
johannes.schmalz@anu.edu.au
Supervisor: Felipe Trevizan

Abstract

State-of-the-art probabilistic replanners are solvers for prob-
abilistic planning problems that offer a very efficient means
to generate a suboptimal solution quickly, and in an anytime
fashion improve on it. Unfortunately, current approaches do
so at the cost of guarantees, i.e. the solution may not be opti-
mal, and it can not guarantee its solution will lead to the goal
with certainty. To address this issue we introduce CoGNeRe,
a novel probabilistic replanner that uses techniques from op-
erations research to provide guarantees and flexibility that
previous replanners can not offer.

Overview

Probabilistic replanners are a category of planners for
Stochastic Shortest Path Problems (SSPs) (Geffner and
Bonet 2013, 79, 81), which iteratively work on improving
a candidate policy, and are able to return this candidate as a
potentially partial policy when prompted for a solution in an
anytime manner. Most replanners use the following method:
relax the probabilistic effects of the problem (determinisa-
tion), solve the ensuing subproblem with strong determinis-
tic solvers, append this plan as part of the candidate policy,
and iterate these steps on undefined states to fill in the pol-
icy. FF-Replan (Yoon, Fern, and Givan 2007) and its exten-
sion Robust-FF (Teichteil-Konigsbuch, Infantes, and Kuter
2008) have demonstrated the effectiveness of this approach
winning the International Probabilistic Planning Competi-
tions in 2004 and 2008 respectively. In terms of generating
solutions quickly they are still considered state-of-the-art.
However, these algorithms are not able to provide guaran-
tees of solution quality, in particular, they can not guaran-
tee that their policy has the highest possible probability of
reaching a goal, and if they do manage to find such a policy,
they can not guarantee the minimal expected cost.

In response, we present our column generation network
flow replanner (CoGNeRe), a novel algorithm that combines
this replanning approach with the column generation tech-
nique from operations research (Desrosiers and Liibbecke
2005). The aim is to exploit the speed of replanning and the
mathematical guarantees of column generation. CoGNeRe
can indeed provide guarantees of optimality, now we are
filling in remaining theoretical gaps and refining the im-
plementation to obtain an efficient planning algorithm. Pre-
liminary results suggest that usually CoGNeRe is slower to

min > flowx - cost(X) (LP 1)
XeQuw

s.t. flowx >0 VX e QUW (Cl)

> flowg =1 (C2)
QeQ
regrouping constraints (C3)

output its first useful policy than Robust-FF, but is quickly
able to overtake Robust-FF in terms of solution quality. We
expect that CoGNeRe will generally converge to the opti-
mal policy slower than state-of-the-art optimal planners like
LRTDP (Bonet and Geffner 2003); CoGNeRe sacrifices fast
convergence in favour of strong anytime performance.

To describe CoGNeRe, first consider the linear pro-
gram (LP) that computes the optimal policy for an SSP by
minimising a network flow problem (d’Epenoux 1963). A
theorem from network flow (Ahuja, Magnanti, and Orlin
1993, 80-81) lets us decompose flow across a deterministic-
planning-problem graph into a combination of paths and cy-
cles; we generalised this to probabilistic-problem graphs.
With this result we can find an SSP’s cheapest flow and
therefore its optimal policy as a combination of plans and
cycles across the SSP’s all-outcomes determinisation, that
is, a class of planning problem that relaxes the SSP by map-
ping each probabilistic effect to a single deterministic ac-
tion (Yoon, Fern, and Givan 2007). So, we can compute an
SSP’s optimal policy with LP 1. In LP 1 we consider the set
of plans and cycles over the all-outcomes determinisation,
Q and W respectively; and we introduce variables flow x
for each X € Q U W to denote the amount of flow being
pumped through the plan or cycle X. Constraint C1 forces
flow to be non-negative; the convexity constraint C2 forces
a flow of 1 to pass from the initial state to goals, which can
be interpreted as the requirement that the corresponding pol-
icy reaches goal with probability 1; and the regrouping con-
straints C3 force the flow to respect the probability distribu-
tion of action effects in the SSP.

In LP 1 there is a variable for each plan and cycle in the
all-outcomes determinisation, which is intractable to enu-

merate explicitly for any interesting problem, so solving this
LP directly is impractical. This is where column genera-
tion can help us: given the specification of an LP with in-
tractably many variables, referred to as the master problem,
column generation works with a smaller LP, the reduced
master problem (RMP), which contains a subset of the mas-
ter problem’s variables. The algorithm solves the reduced
master problem, and iteratively adds variables as needed to
converge to a solution that is optimal for the master problem.
The intuition for this approach is that not all variables — and
in fact most variables — are not relevant to the optimal so-
lution, so we focus on reduced master problems which are
sufficiently small to solve, but still lead us to the optimal so-
lution of the master problem. Column generation is able to
determine which variables need to be added to the RMP to
converge to the master problem’s optimal solution by con-
structing a series of pricing problems, which are relaxations
of the original problem. A pricing problem’s solution yields
the new variables we need to add, and an absence of a solu-
tion informs us that column generation has converged.

CoGNeRe applies column generation to the LP for finding
the optimal policy as a combination of plans and cycles on
the all-outcomes determinisation as follows:

1. we start with a small set of plans and cycles,
2. solve the reduced master problem,

3. construct and solve the corresponding pricing problem
to find a plan or cycle whose addition to the RMP will
improve the RMP’s objective in the next iteration,

4. if we find such a plan or cycle: add it, and repeat from
step 2; if not, we have an optimal solution and can termi-
nate.

In CoGNeRe, the pricing problem turns out to be a determin-
istic shortest path problem; so, as with other replanners, we
repeatedly solve deterministic planning problems to obtain
a policy for the original problem.

Unfortunately, the devil is in the details: the pricing prob-
lem is given by the all-outcomes determinisation with poten-
tially negative action costs determined by the column gener-
ation framework with respect to each state. A solution to the
pricing problem is a negative cost plan, or negative cycle,
or confirmation that neither exist. So, we are dealing with
a deterministic shortest path problem with state-dependent
costs, negative costs, and crucially, potentially with negative
cycles.

Note that the dynamics of pricing problems remain iden-
tical across iterations except for action costs, which get up-
dated at every step, i.e. the states, action, effects, etc. remain
unchanged, only the costs of some actions are updated in a
state-dependent manner.

Current Work
Dealing With Conditional Negative Costs And
Negative Cycles
Recall that to solve the pricing problem we must return a
negative plan or cycle if it exists with the updated costs, oth-

erwise we terminate column generation. We were able to
get relatively strong performance on small problems using

a variant of Bellman-Ford with an early-stop mechanic, i.e.
once a negative plan or cycle has been detected it returns it
straight away. However, this approach and others described
by a survey of similar problems (Cherkassky and Goldberg
1999) are uninformed and polynomial with respect to the
state space, so they do not scale to larger problems. So, the
challenge is to find an informed algorithm that can cope with
negative, state-dependent costs, and can detect negative cy-
cles. In fact A* with minor modifications can solve such
problems, as long as the heuristic is admissible; so the issue
now is that getting an informative and admissible heuristic
with negative state-dependent costs is difficult, and even un-
defined in the presence of negative cycles.

Negative cycles are particularly difficult to deal with,
since they can appear anywhere in the state space, without
any indication of their presence from surrounding states or
transitions — as long as the negative cycle is reachable, it is
an optimal solution. For now we avoid the issue by focusing
on acyclic problems. This is a limitation, but still leaves us
with a large class of problems, notably any SSPs with the no-
tion of monotonically increasing or decreasing timesteps or
resources, e.g. finite-horizon SSPs and vehicle routing with
fuel consumption.

Even in the absence of negative cycles, negative costs
make it difficult to use state-of-the-art heuristics. As a case
study, consider disjoint action landmarks (in the determinis-
tic setting), i.e. a set of actions £ such that any plan must use
at least one action from £. With non-negative cost actions
we can give an admissible heuristic by min;e 2 cost(l) since
the cheapest possible way to pass through the landmark is by
applying the cheapest action once. This argument falls apart
with negative costs, since the cheapest way to pass through
a landmark may collect multiple negative cost actions in the
landmark. This issue makes it non-trivial to adapt landmark-
based heuristics to pricing problems e.g. LM-cut (Helmert
and Domshlak 2009).

Generating heuristics for state-dependent problems is an
actively studied research question. One approach uses edge-
valued multi-valued decision diagrams to compactly encode
cost functions (GeiBer, Keller, and Mattmiiller 2015, 2016).
Unfortunately this doesn’t work for us, since we do not have
neat algebraic expression for expressing costs, but rather dif-
ferent costs on a per-state basis, as determined by the pricing
problem.

We are still exploring which heuristics are most suitable
to be adapted to our use-case.

Exploiting Similarity Between Pricing Problems

Each pricing problem is identical in terms of dynamics, i.e.
each pricing problem is similar to the original problem’s all-
outcomes determinisation, except action costs, which are de-
termined in a state-dependent manner by the column gener-
ation algorithm. More formally, the transition systems in-
duced by each pricing problem is identical, up to cost and
labels of particular transitions. Our current approach for ex-
ploiting this is a variant of the Lifelong Planning A* algo-
rithm (Koenig, Likhachev, and Furcy 2004). The idea is that
we run A*, but upon returning a solution we do not discard
the frontier and current best costs, but store it, and for the

next pricing problem we analyse what cost changes have
been made:

« if an edge cost has been decreased then reinsert the af-
fected vertex into the frontier with the new cost, to en-
sure that the change is propagated to the optimal path if
relevant;

« if an edge cost has been increased, then all paths that re-
lied on that edge must be re-evaluated, i.e. descendants
of that edge have their current best cost reset to co, and
they are re-inserted into the frontier.

In the worst case an edge close to the initial state has its
cost increased, and we have to recompute the entire search
graph, and thus we are running regular A* with the overhead
of processing edge updates and the frontier. In practice how-
ever, we have found that this approach reduced computation
time substantially.

Lower Bound For Policy Cost

The relationship between primal and dual LPs allows us to
provide upper and lower bounds for the problem. A novel
feature of our approach is that we can leverage the column
generation framework to provide a lower bound for the op-
timal policy cost which becomes tighter as CoGNeRe pro-
gresses.

Consider the objective of the optimal solution for the mas-
ter problem zyp. A well-known theorem from column gen-
eration (Desrosiers and Liibbecke 2005, 8-9) gives us the
bound Z + kc* < zyp < Z where

* Z is the objective value of the optimal solution for our
current RMP;

¢ ¢* is the smallest reduced cost for our current RMP, i.e.
the cost of the most negative plan or cycle in our pricing
problem;

e is an upper bound for the sum of all variable assign-
ments in the master problem’s optimal solution. In an
acyclic problem, thanks to the constraint that ensures a
flow of one through the network (convexity constraint
C2), wecanset k = 1.

The value of z corresponds to the cost of the current pol-
icy, which clearly gives an upper bound to the cost of the
optimal policy, hence zyp < Zz. In the lower bound for zyp,
c* denotes the most we can possibly decrease the current
solution’s objective by adding the variable corresponding to
the most negative plan or cycle. In the acyclic case we can
assign the new variable a value of at most 1 (due to convex-
ity constraint C2), and so the most we can reduce the objec-
tive is indeed ¢*. In the presence of cycles it gets a bit more
complicated since a cycle’s variable is not bounded by the
convexity constraint. Note that Z is monotonically decreas-
ing since solutions can only improve with the introduction
of new columns, so the upper bound is only getting tighter;
the lower bound has no such guarantee and may fluctuate,
but we can take the maximum across all RMPs and thereby
get a monotonically increasing lower bound as well.

Lower bounds are not by themselves novel, since heuris-
tics can provide lower bounds; but especially in a probabilis-
tic setting these tend to be very loose, and the lower bounds

from column generation can be tighter. This technique en-
ables our anytime solver to give a more precise optimality

gap.

Future Work

Here we outline some potential directions of future research
that CoGNeRe and more generally, operations research in
planning can take.

Dealing with Cyclic Problems

CoGNeRe is able to solve cyclic problems by running an
algorithm that can detect negative cycles e.g. Bellman-Ford
on the pricing problems, and then adding any found negative
cycles as columns, just like with plans. As discussed before,
the issue is that we need admissible heuristics to scale up
to larger problems. First, we need to redefine what it means
for a heuristic to be admissible in the presence of negative
cycles, and there are two options: (1) an admissible heuristic
must still underestimate the actual cost, so if a negative cycle
is reachable from state s then h(s) = —oo; (2) we only
require the heuristic to reason about plans, so an admissible
heuristic must underestimate the cost of the cheapest plan,
and may ignore negative cycles.

Approach (1) has the potential of destroying a lot of infor-
mation about negative plans, and in a sense prioritises nega-
tive cycles. Approach (2) suggests that cycle and plan search
should be separated, e.g. we run a plan finding algorithm
with some cycle detection mechanisms, as in (Cherkassky
and Goldberg 1999), which can prioritise plans over nega-
tive cycles. In both cases the issue is that CoGNeRe is sensi-
tive to the order in which columns are added so prioritising
cycles or plans tends to perform well on some problems, but
poorly on others. A strong solution needs to balance these is-
sues, either by intelligently deciding whether a cycle or plan
are more useful, or by adding both.

Solving Pricing Problems as Diverse Plans
Problems

In column generation, for some problems, it is very efficient
to extract multiple solutions from a single pricing problem,
and add all of them as columns to the reduced master prob-
lem at once. The idea is that a column that is guaranteed to
improve the RMPs solution at one step, is likely to be use-
ful later as well; it is also a way to deal with the property
of column generation that the column with most negative re-
duced cost may not correspond to the column that lets us
converge most quickly. So by adding multiple columns we
increase the chances of adding columns that lead to a solu-
tion quicker, and potentially allows us to reuse the results of
the pricing problem in future iterations. Often this approach
relies on the columns being sufficiently diverse. As motiva-
tion, in CoGNeRe, if we add multiple plans that share an
action with an undesirable probabilistic effect, then that ac-
tion’s determinisation will receive a high cost in future iter-
ations, which indicates to us that the columns are not useful.

These requirements can be expressed as a bounded quality
diverse planning problem (Katz and Sohrabi 2020), where a
solution is a set of plans, where the plans are sufficiently

diverse, and each plan’s cost is bounded by some constant
value. For CoGNeRe, the bound is 0 so that we only consider
negative-cost plans in the pricing problem; diversity can be
defined in terms of how many actions are shared. Katz and
Sohrabi (2020) propose a flexible method for this style of
problem which works by forbidding certain plans at the level
of the planning task, which is not amenable to our method
for exploiting similarity between pricing problems. So the
challenge becomes how to combine these concepts.

Generalising CoGNeRe To More Problems

The LP approach endows CoGNeRe with a lot of flexibil-
ity with respect to objective functions and additional con-
straints. For instance, we can search for a policy that max-
imises the probability of reaching a goal; or, we can even
stop CoGNeRe once it has reached some measurement of
quality, e.g. return the partial policy as soon as the probabil-
ity of reaching goal is > 0.9.

SSPs can be extended to constrained shortest path prob-
lems (CSSPs) which allows us to bound the expectation
of different cost functions. More complex constraints are
also possible, for instance using probabilistic linear tempo-
ral logic (PLTL) formulae. Such constraints can be compiled
into constraints over expectations (Baumgartner, Thiébaux,
and Trevizan 2018), i.e. of the form E[cost(¢)] > p where
¢ is a linear temporal logic formula, p € [0, 1], and the cost
function is very similar to the reward function for maximis-
ing probability: it is zero everywhere except for a subset of
the goal states. It is difficult to generate informative heuris-
tics for this kind of problem. The upshot is that there are
currently no strong heuristics, and so informed CSSP plan-
ners suffer.

This motivates that CoGNeRe may be a strong candidate
for this type of problem, since it does not require heuristics
for probabilistic problems, only heuristics for the determin-
istic pricing problem.

Another complex variant of probabilistic problems re-
quires the solver to take into consideration the variance of
trajectories as defined by the candidate policy. This is diffi-
cult for current solvers because they are designed around the
construction and improvement of policies, and information
about the possible trajectories needs to be extracted after-
wards. CoGNeRe on the other hand, natively reasons about
all possible trajectories in a compact, finite way, so it should
offer a clean solution.

Heuristics For Planning Under Uncertainty Models

Rather than directly solving extensions of SSPs and CSSPs
like MDPIPs (Shirota Filho et al. 2007), PLTL-constrained
CSSPs, etc. we can explore the idea of solving relaxations
with CoGNeRe in order to obtain heuristics for the original
problem. We have already discussed CoGNeRe’s ability to
generate lower bounds; this combined with different pricing
problem heuristics and techniques for reusing partial solu-
tions may set CoGNeRe up as a good method for obtain-
ing heuristics. CoGNeRe with its guarantees of optimality
is likely to be too slow for this, so we can explore how to
generate potentially non-admissible, informative heuristics
using relaxation techniques from operations research, based

on approaches like Dantzig-Wolfe decomposition and Ben-
ders decomposition.

Acknowledgments
Thanks to J. Christopher Beck for his feedback.

References

Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network flows
: Theory, Algorithms, and Applications. Englewood Cliffs,
N.J: Prentice Hall.

Baumgartner, P.; Thiébaux, S.; and Trevizan, F. 2018.
Heuristic Search Planning With Multi-Objective Probabilis-
tic LTL Constraints. In Proc. of 16th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR).

Bonet, B.; and Geftner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In
Proc. of 13th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS).

Cherkassky, B. V.; and Goldberg, A. V. 1999. Negative-cycle
detection algorithms. Mathematical Programming.

d’Epenoux, F. 1963. A probabilistic production and inven-
tory problem. Management Science.

Desrosiers, J.; and Liibbecke, M. E. 2005. A Primer in Col-
umn Generation, 1-32. Boston, MA: Springer US.

Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.

Geiller, F.; Keller, T.; and Mattmiiller, R. 2015. Delete Re-
laxations for Planning with State-Dependent Action Costs.
Proc. of the Int. Symposium on Combinatorial Search.

Geiller, F.; Keller, T.; and Mattmiiller, R. 2016. Abstrac-
tions for Planning with State-Dependent Action Costs. Proc.
of 26th Int. Conf. on Automated Planning and Scheduling
(ICAPS).

Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
Proc. of 19th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS).

Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Plan-
ning. Proc. of the AAAI Conference on Artificial Intelli-
gence.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A*. Artificial Intelligence.

Shirota Filho, R.; Cozman, F. G.; Trevizan, F.; de Campos,
C. P; and Barros, L. N. 2007. Multilinear and Integer Pro-
gramming for Markov Decision Processes with Imprecise
Probabilities. In Proc. of 5th Int. Symposium On Imprecise
Probability: Theories And Applications.
Teichteil-Konigsbuch, F.; Infantes, G.; and Kuter, U. 2008.
RFF: A robust, FF-based MDP planning algorithm for gen-
erating policies with low probability of failure. Sixth Inter-
national Planning Competition at ICAPS.

Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In Proc. of 17th Int.
Conf. on Automated Planning and Scheduling (ICAPS).

