
Stochastic Shortest Path Problems (SSPs)

SSPs are a generalisation of classical planning, where each action may have a probabilistic
effect – transitions are replaced by P(s ′|s, a), the probability of reaching s ′ after applying a.

s0 s1 s2 g

s1 s2 s3

s1 s2 s3
2
3

1
3

This SSP will be a running example. Unless otherwise stated, its actions have unit cost and
prob. effects have equal probabilities of reaching any effect.

Determinisation

We use the all-outcomes determinisation, where each probabilistic action a gets split into
action a . s ′ for each state s ′ such that P(s ′|s, a) > 0.

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

Now, we have a classical planning problem.

Replanners

We consider probabilistic replanners to be domain-independent planners that are designed to
output policies in an online manner. The state-of-the-art replanner is Robust-FF (winner
of IPPC 2008), which uses plans from the all-outcomes determinisation to form a policy.

Policies and Network Flow

A policy induces a solution to the network flow problem across an SSP, and vice versa.

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

π(s) =

{
a0 if s = s0

ai if s = si
∼=

We can find the optimal policy by finding the minimal combination of plans and cycles that
form a policy i.e. a flow on the SSP; but doing this naively is infeasible, we would need a
variable for each plan and cycle!

Column Generation and CoGNeRe

Given a very large LP, column generation considers a similar LP but with only a subset of
variables, called the Reduced Master Problem (RMP), which for us contains some
plans and cycles. Column Generation lets us iteratively add plans and cycles that will bring
the RMP closer to the original problem’s optimal objective as follows:

Update RMP
⊂

Solve RMP
⊂ X

Construct
Pricing Problem

P

Solve
Pricing Problem

PX

Terminate with Optimal Solution
π∗

Does P have a solution?

Yes No

♠ Column generation over network flow LP gives CoGNeRe.

Probabilistic Replanning with Guarantees
Johannes Schmalz and Felipe Trevizan

CoGNeRe in Action (Column Generation over Network Flow for Replanning)

Pricing Problem Policy as Flow Evaluation

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

P(goal, π)

Internal: 1
3 Actual: 1

4

V (s0, π)

Internal: 1334.33 Actual: 1500.75

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

P(goal, π)

Internal: 1
2 Actual: 1

2

V (s0, π)

Internal: 1002 Actual: 1002

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

P(goal, π)

Internal: 2
3 Actual: 1

V (s0, π)

Internal: 669.33 Actual: 4.5

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

P(goal, π)

Internal: 1 Actual: 1
V (s0, π)

Internal: 4.5 Actual: 4.5

Results (Selective and Preliminary)

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

0.1

0.2

0.3

0 500

0

0.2

0.4

0.6

0.8

1 CoGNeRe

rff-pg

rff-bg

P
(g

o
a
l)

Time (secs)

Prob. Blocksworld w/ Finite Horizon
(6 blocks, horizon = 15)

Exploding Blocksworld
(8 blocks)

Prob. Blocksworld
(18 blocks)

Graphs show P(goal|π) where π is replanner’s online policy at given time (secs). We consider CoGNeRe and Robust-FF on
some IPPC domains.

Pricing Problem

For us, the pricing problem is the all-outcomes determinisation but with
different action costs; and on this new problem we must find a negative cost
plan (not necessarily the cheapest), or a negative cycle. The following
features make it non-trivial to adapt heuristics

state-dependent costs (C (s, a) 6= C (s ′, a));

negative costs (and the presence of negative cycles).

Bellman-Ford or Dijkstra’s algorithm with some modifications work, but they
do not scale up.

Large Neighbourhood Search

We are looking for some plan that is cheap enough, so we can use a variant
of Large Neighbourhood Search:

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

Select a plan as the incumbent solution.

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

“Destroy and Repair” the plan;
we do this by selecting a state in the plan as
an artificial starting state, marking successors
in the plan as artificial goals, and then running
a depth-bounded search. If a cheaper plan is found,
set that as the new incumbent solution.

Envelope Planner

Negative costs can only appear on transitions (s, a, s ′) where s, a appears in
a plan or cycle in the RMP. So, we can run Bellman-Ford on relevant states
only, and then run A∗ from the fringe to goals, using classical heuristics for
the all-outcomes determinisation.

Closing the RMP—Policy-Objective Gap

In the example we see that CoGNeRe may have a closed policy
(P(goal|π) = 1) without being aware of it. To mitigate this, when detected:

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

We start with an RMP with its reduced
set of plans and cycles.

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

Extract the current best policy from
the RMP and evaluate it as flow.

Now, decompose the flow into plans and cycles.

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

s0 s1 s2 g

s1 s2 s3

s1 s2 s3

Bonus Facts

CoGNeRe can be initialised with a set of plans and cycles or a policy – so
you can kickstart it with Robust-FF or any other non-optimal planner.

Thanks to column generation, we can give lower bounds for the optimal
policy cost.

More information available at schmlz.github.io/cognere

http://schmlz.github.io/cognere

