Stochastic Shortest Path Problems (SSPs)

Pricing Problem

For us, the pricing problem is the all-outcomes determinisation but with
different action costs; and on this new problem we must find a negative cost
plan (not necessarily the cheapest), or a negative cycle. The following
features make it non-trivial to adapt heuristics

m state-dependent costs (C(s, a) # C(s', a));

CoGNeRe in Action (Column Generation over Network Flow for Replanning) m negative costs (and the presence of negative cycles).
Bellman-Ford or Dijkstra’s algorithm with some modifications work, but they

SSPs are a generalisation of classical planning, where each action may have a probabilistic
effect — transitions are replaced by P(s'|s, a), the probability of reaching s’ after applying a.
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do not scale up.
Pricing Problem Policy as Flow Evaluation

Large Neighbourhood Search

This SSP will be a running example. Unless otherwise stated, its actions have unit cost and

prob. effects have equal probabilities of reaching any effect. e e e @ @ @ P(goal, ) We are looking for some plan that is cheap enough, so we can use a variant
S~ e ] AT | of age Neighbourhood Search
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We use the all-outcomes determinisation, where each probabilistic action a gets split into e | |
| / / | p g p " ternal- 1332433 Actual. 150075 0 Select a plan as the incumbent solution.
action a> s’ for each state s’ such that P(s’|s, a) > 0.
"Destroy and Repair” the plan;
we do this by selecting a state in the plan as
@ P(goal, ) an artificial starting state, marking successors

in the plan as artificial goals, and then running
;) 2 depth-bounded search. If a cheaper plan is found,
set that as the new incumbent solution.
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Now, we have a classical planning problem.

Envelope Planner

Negative costs can only appear on transitions (s, a, s’) where s, a appears in

Replanners

We consider probabilistic replanners to be domain-independent planners that are designed to e @ e

L . . . P(goal, m | _
output policies in an online manner. The state-of-the-art replanner is Robust-FF (winner “ % a plan or cycle in the* RMP. So, We can run Bellm.an Ford on relevafnt. states
of IPPC 2008), which uses plans from the all-outcomes determinisation to form a policy. @‘e @‘e @ @ ‘e e 3 il only, and then run A from the fringe to goals, using classical heuristics for
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V(so, ) the all-outcomes determinisation.

Internal: 669.33 Actual: 4.5 Closing the RMP—Policy-Objective Gap

Policies and Network Flow @ @ @

A policy induces a solution to the network flow problem across an SSP, and vice versa.

a 1If s = s
a Ifs=s;

In the example we see that CoGNeRe may have a closed policy
(P(goal|m) = 1) without being aware of it. To mitigate this, when detected:

P(goal, ) oG | L
Internal- 1 Actual: 1 We start with an RMP with its reduced
@ @ e~ set of plans and cycles.
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We can find the optimal policy by finding the minimal combination of plans and cycles that Extract the current best policy from

form a policy i.e. a flow on the SSP; but doing this naively is infeasible, we would need a = * ® % the RMP and evaluate it as flow.
variable for each plan and cycle!
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Results (Selective and Preliminary) Now, decompose the flow into plans and cycles.

Column Generation and CoGNeRe

Prob. Blocksworld w/ Finite Horizon Exploding Blocksworld Prob. Blocksworld e @ e
Given a very large LP, column generation considers a similar LP but with only a subset of (6 blocks, horizon = 15) (8 blocks) (18 blocks) L. - A
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variables, called the Reduced Master Problem (RMP), which for us contains some z 5 ! " CoGNeRe o @ (51
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plans and cycles. Column Generation lets us iteratively add plans and cycles that will bring \ 0.8 ¢ rftpg

the RMP closer to the original problem’s optimal objective as follows: 0.4 . -bg Bonus Facts
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Solve RMP Update RMP | Yes — No | Terminate with Optimal Solution > 1;[ i 0 m CoGNeRe can be initialised with a set of plans and cycles or a policy — so
C Vv C T 0.2 [riteteitisesiolittsrnetited you can kickstart it with Robust-FF or any other non-optimal planner.
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m [ hanks to column generation, we can give lower bounds for the optimal
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Graphs show P(goal|m) where 7 is replanner’s online policy at given time (secs). We consider CoGNeRe and Robust-FF on

& Column generation over network flow LP gives CoGNeRe. some |IPPC domains.


http://schmlz.github.io/cognere

