Stochastic Shortest Path Problems (SSPs)

Pricing Problem

For us, the pricing problem is the all-outcomes determinisation but with
different action costs; and on this new problem we must find a negative cost
plan (not necessarily the cheapest), or a negative cycle. The following
features make it non-trivial to adapt heuristics

m state-dependent costs (C(s, a) # C(s', a));

CoGNeRe in Action (Column Generation over Network Flow for Replanning) m negative costs (and the presence of negative cycles).
Bellman-Ford or Dijkstra’s algorithm with some modifications work, but they

SSPs are a generalisation of classical planning, where each action may have a probabilistic
effect — transitions are replaced by P(s'|s, a), the probability of reaching s’ after applying a.

Probabilistic Replanning with Guarantees — [&] Australar

. . =y Universit
Johannes Schmalz and Felipe Trevizan Y

do not scale up.
Pricing Problem Policy as Flow Evaluation

Large Neighbourhood Search

This SSP will be a running example. Unless otherwise stated, its actions have unit cost and

prob. effects have equal probabilities of reaching any effect. e e e @ @ @ P(goal, ) We are looking for some plan that is cheap enough, so we can use a variant
S~ e ] AT | of age Neighbourhood Search
(2

V(So 7T)
We use the all-outcomes determinisation, where each probabilistic action a gets split into e | |
| / / | p g p " ternal- 1332433 Actual. 150075 0 Select a plan as the incumbent solution.
action a> s’ for each state s’ such that P(s’|s, a) > 0.
"Destroy and Repair” the plan;
we do this by selecting a state in the plan as
@ P(goal, ) an artificial starting state, marking successors

in the plan as artificial goals, and then running
;) 2 depth-bounded search. If a cheaper plan is found,
set that as the new incumbent solution.

Internal: % Actual: %
V(5077T)

Internal: 1002 Actual: 1002

OO

Now, we have a classical planning problem.

Envelope Planner

Negative costs can only appear on transitions (s, a, s’) where s, a appears in

Replanners

We consider probabilistic replanners to be domain-independent planners that are designed to e @ e

L . . . P(goal, m | _
output policies in an online manner. The state-of-the-art replanner is Robust-FF (winner “ % a plan or cycle in the* RMP. So, We can run Bellm.an Ford on relevafnt. states
of IPPC 2008), which uses plans from the all-outcomes determinisation to form a policy. @‘e @‘e @ @ ‘e e 3 il only, and then run A from the fringe to goals, using classical heuristics for

ORRO
(@) | G (s
ORRORCO)

V(so, ) the all-outcomes determinisation.

Internal: 669.33 Actual: 4.5 Closing the RMP—Policy-Objective Gap

Policies and Network Flow @ @ @

A policy induces a solution to the network flow problem across an SSP, and vice versa.

a 1If s = s
a Ifs=s;

In the example we see that CoGNeRe may have a closed policy
(P(goal|m) = 1) without being aware of it. To mitigate this, when detected:

P(goal, ) oG | L
Internal- 1 Actual: 1 We start with an RMP with its reduced
@ @ e~ set of plans and cycles.

ORRO
ORRO
ORRO

12
=
Gl

||

We can find the optimal policy by finding the minimal combination of plans and cycles that Extract the current best policy from

form a policy i.e. a flow on the SSP; but doing this naively is infeasible, we would need a = * ® % the RMP and evaluate it as flow.
variable for each plan and cycle!

V(S(),ﬂ')
Internal: 4.5 Actual: 4.5

(1)
(1e)
O
EEs

G\‘@ (1,

(=) ()

-

Results (Selective and Preliminary) Now, decompose the flow into plans and cycles.

Column Generation and CoGNeRe

Prob. Blocksworld w/ Finite Horizon Exploding Blocksworld Prob. Blocksworld e @ e
Given a very large LP, column generation considers a similar LP but with only a subset of (6 blocks, horizon = 15) (8 blocks) (18 blocks) L. - A
. . . 0.6 . 0 w @ » 8
variables, called the Reduced Master Problem (RMP), which for us contains some z 5 ! " CoGNeRe o @ (51
. . - . . 0.5 : 0.3 2 g WY £
plans and cycles. Column Generation lets us iteratively add plans and cycles that will bring \ 0.8 ¢ rftpg

the RMP closer to the original problem’s optimal objective as follows: 0.4 . -bg Bonus Facts

. ) . : : 0.2 '
Solve RMP Update RMP | Yes — No | Terminate with Optimal Solution > 1;[ i 0 m CoGNeRe can be initialised with a set of plans and cycles or a policy — so
C Vv C T 0.2 [riteteitisesiolittsrnetited you can kickstart it with Robust-FF or any other non-optimal planner.

0.1
m [ hanks to column generation, we can give lower bounds for the optimal

P(goal)

0.1

Construct Solve .
- o | : 0 policy cost.
Pricing Problem Pricing Problem Does [P have a solution? 0 200 400 600 800 0 200 400 600 80O 0 500 ofao
P P Time (secs) More information available at schmlz.github.io/cognere E.%
[=]

Graphs show P(goal|m) where 7 is replanner’s online policy at given time (secs). We consider CoGNeRe and Robust-FF on

& Column generation over network flow LP gives CoGNeRe. some |IPPC domains.


http://schmlz.github.io/cognere

