

Finding Optimal Deterministic Policies for **Constrained Stochastic Shortest Path Problems**

Johannes Schmalz and Felipe Trevizan

Background

Constrained Stochastic Shortest Path Problem (CSSP)

Defined by tuple $(S, s_0, G, A, P, \vec{C}, \vec{u})$ with states (S), initial state (s_0) , goals (G), actions (A), transition probabilities (P), cost vector $(\vec{C}: \mathsf{S} \to \mathbb{R}^{n+1}_{>0})$, cost upper bounds $(\vec{u} \in \mathbb{R}^{n}_{>0})$.

Policies

Policies π map states to actions. They have two flavours:

Deterministic policy $\pi : S \rightarrow A$

Stochastic policy $\pi : S \rightarrow$ probability distribution over A

Policy Cost: $C_i(\pi) =$ expected cost *i* to reach G with π

CSSP Example

You need to get to work. You can run, use a taxi, or walk to the train station and try the train. The train is cancelled with 50% probability. Each action has a cost vector $[t \ p \ e]$ in terms of time (t), price (p), and personal effort (e). Task: get to work in minimal time s.t. price ≤ 15 and effort ≤ 10 over expectation.

run [1 0 20]

Solving CSSPs with MIP

Imagine the CSSP as a flow network: actions are pipes, states are junctions, and we want to route 1L of water through it with minimal cost. Each $x_{s,a}$ denotes amount of flow through pipe afrom s and $\Delta_{s,a} = 1/0$ if the pipe has/has no flow.

 $\min C_0(\vec{x})$ s.t. $\vec{x}.\vec{\Lambda}$ $\forall s \in \mathsf{S} \setminus (\mathsf{G} \cup \{s_0\})$ out(s) - in(s) = 0 $out(s_0) - in(s_0) = 1$ $\sum in(g) = 1$

Feasibility: π must satisfy $C_i(\pi) \leq u_i$ for all $i \in \{1, \ldots, n\}$

Optimality: π is optimal if it is feasible and minimises $C_0(\pi)$

Optimal stochastic policies are optimal for the CSSP, but optimal deterministic policies need **not** be optimal for the CSSP. Nevertheless...

Practitioners Want Deterministic Policies

- ethical issues in medical contexts (Roijers et al. 2013)
- aviation regulations (Geißer et al. 2020)
- coordination in multi-agent systems (Dolgov and Durfee) 2005)
- accountability and explainability (Hong and Williams 2023)

more predictable (see example)

Optimal stochastic policy: $\pi^*(s_0) = \{ \operatorname{run} : 50\%, \operatorname{taxi} : 50\% \}$ $C_{\rm price}(\pi^*) = 15$ $C_{\rm effort}(\pi^*) = 10$ $C_{\mathsf{time}}(\pi^*) = 1$ But individually *run* and *taxi* violate the constraints...

Optimal deterministic policy: $\pi(s) =$ walk or train $C_{\mathsf{price}}(\pi) = 5$ $C_{\mathsf{time}}(\pi) = 3$ $C_{\text{effort}}(\pi) = 4$ More expensive time-wise, but satisfies constraints *

$g\inG$	
$x_{s,a} \ge 0$	$\forall s \in S, a \in A(s)$
$C_i(\vec{x}) \le u_i$	$\forall i \in \{1, \dots, n\}$
$x_{s,a} \leq \mathbf{M}\Delta_{s,a}$	$\forall s \in S, a \in A(s)$
$\sum \Delta_{s,a} \le 1$	$\forall s \in S$
$a{\in}A(s)$	
$\Delta_{s,a} \in \{0,1\}$	$\forall s \in S, a \in A(s)$

In and out flow from states, and flow cost are macros:

•
$$C_i(\vec{x}) = \sum_{s \in S, a \in A(s)} x_{s,a} C_i(a)$$

• $out(s) = \sum_{a \in A(s)} x_{s,a}$
• $in(s) = \sum_{s' \in S, a' \in A(s')} x_{s,a} P(s'|s,a)$

Contributions

The Issue with big \mathbf{M}

If M is too small...

■ MIP can become infeasible

optimal policy may become infeasible If M is too big...

Numerical instability

May get non-integer solutions (trickle flow)

Finding big M Automatically

New insight: we can relate **any feasible** solution \vec{x} to the maximum flow over the **optimal** solution with $obj(\vec{x}) \cdot g^{-1} \ge 1$ x_{\max} where $g = \min_{a \in A} C_0(a)$. Algorithm: 1 select some M **2** try to solve MIP with \mathbf{M}

New Algorithm for Finding Deterministic Policies

For finding **stochastic** policies, i²-dual (Trevizan et al. 2017) is the state-of-the-art. It uses a heuristic to iteratively construct partial CSSPs, focusing on the promising states. The partial CSSPs are solved with LPs.

A General Bound

This always works: $\mathbf{M} = p_{\min}^{-|\mathsf{S} \setminus \mathsf{G}|}$ ■ $p_{\min} \in (0, 1]$ min. probability in CSSP **\blacksquare** S \ G set of non-goal states

That's impractically big, but can't do better in general:

 \blacksquare if infeasible: increase ${\bf M}$ and repeat step 2 • if feasible: set $\mathbf{M} \leftarrow \operatorname{obj}(\vec{x}) \cdot g^{-1}$ ${}_{\mathbf{3}}$ solve MIP with ${\mathbf{M}}$

Avoiding big M

Can completely avoid big ${f M}$ with SOS1 constraints. A SOS1 constraint is an ordered set of continuous variables $\{x_0, \ldots, x_k\}$ such that at most one variable is allowed to be nonzero.

For us: $\{x_{s,a} | a \in A(s)\}$ for each state s, i.e., at most one action for A(s) may have nonzero flow. That's exactly what we want!

New: we replace i^2 -dual's LPs with MIPs. This yields i²-dual-det, which finds optimal **deterministic** policies.

Making it faster: we don't care about the exact solution to each MIP, so we can approximate them! There are many ways to do this:

- Use LP relaxation
- Use constraint generation for integrality constraints
- Allow large MIP gap (also makes it anytime)

Interesting Benchmarks and Performance

More Background: Linearisation

A linearisation $\vec{\lambda} \in \mathbb{R}^{n+1}$ relaxes the CSSP into an SSP with the scalar cost function $C'(a) = \lambda \cdot \hat{C}(a)$

 $\dot{\lambda} = [1 \ 0 \ \cdots \ 0]$ is the trivial relaxation that only looks at C_0 .

Constraint Interestingess

We introduce a **new categorisation of CSSPs** based on how interesting their constraints are.

- **Trivial**: if the constraints can be ignored, and the trivial relaxation yields a feasible policy.
- **Linearisable**: if $\exists \hat{\lambda}$ so that its relaxation yields a feasible policy.
- **Interesting**: if it is not linearisable.
- Practically Interesting: if it is linearisable, but for each feasible policy there are many infeasible ones.

Policy costs w.r.t. C_0 and C_1 . Red line is constraint over C_1 . Dotted green line is contour line for linearisation. Points are the costs of deterministic policies. $\blacklozenge / \circ =$ feasible / infeasible w.r.t. C_2

Very Short Summary of Experimental Results

• The existing state-of-the-art, which is based on linearisation, is best on **trivial** and **linearisable** problems. Our algorithm i²-dual-det is best on interesting problems.

More available at schmlz.github.io/det-pi-for-cssp

You can email me at johannes.schmalz@anu.edu.au

