Australian
o National
University

for

Finding Optimal Deterministic Policies

/ZECAI

50th ANNIVERSARY

Constrained Stochastic Shortest Path Problems

Johannes Schmalz and Felipe Trevizan

Constrained Stochastic Shortest Path Problem (CSSP)

Defined by tuple (S, sy, G, A, P, C, @) with states (S), initial state
(sg), goals (G), actions (A), transition probabilities (P), cost
vector (C': S — RZ}'), cost upper bounds (@ € RZ).

Policies

Policies m map states to actions. They have two flavours:
Deterministic policy 7 : S — A
Stochastic policy m : S — probability distribution over A

Policy Cost: C;(7) = expected cost i to reach G with 7
Feasibility: m must satisfy C;(7) < u; for all i € {1,...,n}
Optimality: 7 is optimal if it is feasible and minimises Cy(7)

Optimal stochastic policies are optimal for the CSSP, but op-
timal deterministic policies need not be optimal for the CSSP.
Nevertheless. . .

Practitioners Want Deterministic Policies

m ethical issues in medical contexts (Roijers et al. 2013)
m aviation regulations (GeiBer et al. 2020)

m coordination in multi-agent systems (Dolgov and Durfee
2005)

m accountability and explainability (Hong and Williams 2023)
m more predictable (see example)

The Issue with big M

If M is too small. ..

m MIP can become infeasible
m optimal policy may become infeasible
If M is too big...
m Numerical instability
m May get non-integer solutions (trickle flow)

A General Bound

This always works: M = p;i\i\Gl

m poin € (0,1] min. probability in CSSP
m S\ G set of non-goal states

That's impractically big, but can't do better in general:

Background

CSSP Example

You need to get to work. You can run, use a taxi, or walk to
the train station and try the train. The train is cancelled with
50% probability. Each action has a cost vector [t p €] in terms of
time (), price (p), and personal effort (¢). Task: get to work in
minimal time s.t. price < 15 and effort < 10 over expectation.

run |1 0 20]

taxi [1 30 0]

Optimal stochastic policy: 7*(sy) = {run : 50%, taxi : 50%}
Ctime(ﬂ-*) =1 Cprice(ﬂ-*) = 15 C(effort(ﬂ-*) = 10
But individually run and taxi violate the constraints. . .

Optimal deterministic policy: 7(s) = walk or train
Otime(ﬂ-) =3 C1price(7-‘-) =9 C(effort(ﬂ-) =4

More expensive time-wise, but satisfies constraints>X

Contributions

Finding big M Automatically

New insight: we can relate any feasible solution ¥ to the
maximum flow over the optimal solution with obj(Z) - g=! >
Tmax Where g = mingea Co(a).

Algorithm:

select some M
try to solve MIP with M

m if infeasible: increase M and repeat step 2
m if feasible: set M < obj(Z) - g~

solve MIP with M
Avoiding big M

Can completely avoid big M with SOS1 constraints. A SOS1

constraint is an ordered set of continuous variables {x, ..., zj}
such that at most one variable is allowed to be nonzero.

For us: {x;4|a € A(s)} for each state s, i.e., at most one action
for A(s) may have nonzero flow. That's exactly what we want!

Solving CSSPs with MIP

Imagine the CSSP as a flow network: actions are pipes, states
are junctions, and we want to route 1L of water through it with
minimal cost. Each x,, denotes amount of flow through pipe a
from s and A;, = 1/0 if the pipe has/has no flow.

min Cy(Z) s.t.
7 A
out(s) — in(s)

=0 Vs € S\ (GU {sy})
out(sy) — in(sg) = 1

> in(g) =1

gei

Tsq > 0 Vs €S, a € A(s)
Tsq < MAg, Vs €S,a € A(s)
» A< Vs €S
achA(s)

Asq, €40,1} Vs €S,a € A(s)

In and out flow from states, and flow cost are macros:

H CZ(CI_Z) — ZIS@CZ'(CL)
)

seS,acA(s

New Algorithm for Finding Deterministic Policies

For finding stochastic policies, i°>-dual (Trevizan et al. 2017) is
the state-of-the-art. It uses a heuristic to iteratively construct

partial CSSPs, focusing on the promising states. The partial
CSSPs are solved with LPs.
New: we replace i*-dual’'s LPs with MIPs. This yields

i°-dual-det, which finds optimal deterministic policies.

Making it faster: we don't care about the exact solution to
each MIP, so we can approximate them! There are many ways
to do this:

m Use LP relaxation
m Use constraint generation for integrality constraints
m Allow large MIP gap (also makes it anytime)

More Background: Linearisation

A linearisation X € R"*! relaxes the CSSP into an SSP with

the scalar cost function C’(a) = X - C(a)

—

A=1[10 --- 0] is the trivial relaxation that only looks at Cj.

Constraint Interestingess

We introduce a new categorisation of CSSPs based on how

interesting their constraints are.

m Trivial: if the constraints can be ignored, and the trivial
relaxation yields a feasible policy.

m Linearisable: if 3\ so that its relaxation yields a feasible

policy.
m Interesting: if it is not linearisable.

m Practically Interesting: if it is linearisable, but for each
feasible policy there are many infeasible ones.

Interesting Benchmarks and Performance

Constraint Interestingess Visualised

Linearisable

Interesting

Practically Interesting

8 8.
1 © 1 e
6 O 6 "‘@
5 5

G @ 4
] 5
|l] 2
NN &
0 . 0

b
o
b

Policy costs w.r.t. Cj and (. Red line is constraint over C';. Dotted green line is contour line for linearisation.
Points are the costs of deterministic policies. /o = feasible / infeasible w.r.t. C5

Very Short Summary of Experimental Results

m [he existing state-of-the-art, which is based on linearisation, is best on trivial and linearisable problems.

More available at schmlz.github.io/det-pi-for-cssp

You can email me at johannes.schmalz®@anu.edu.au

m Our algorithm i’>-dual-det is best on interesting problems.

https://schmlz.github.io/det-pi-for-cssp/
mailto:johannes.schmalz@anu.edu.au

