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Background

Constrained Stochastic Shortest Path Problem (CSSP)

Defined by tuple ⟨S, s0, G, A, P, C⃗, u⃗⟩ with states (S), initial state
(s0), goals (G), actions (A), transition probabilities (P ), cost
vector (C⃗ : S→ Rn+1

≥0 ), cost upper bounds (u⃗ ∈ Rn
≥0).

Policies
Policies π map states to actions. They have two flavours:

1 Deterministic policy π : S→ A
2 Stochastic policy π : S→ probability distribution over A

Policy Cost: Ci(π) = expected cost i to reach G with π

Feasibility: π must satisfy Ci(π) ≤ ui for all i ∈ {1, . . . , n}

Optimality: π is optimal if it is feasible and minimises C0(π)

Optimal stochastic policies are optimal for the CSSP, but op-
timal deterministic policies need not be optimal for the CSSP.
Nevertheless. . .
Practitioners Want Deterministic Policies

ethical issues in medical contexts (Roijers et al. 2013)
aviation regulations (Geißer et al. 2020)
coordination in multi-agent systems (Dolgov and Durfee
2005)
accountability and explainability (Hong and Williams 2023)
more predictable (see example)

CSSP Example
You need to get to work. You can run, use a taxi, or walk to
the train station and try the train. The train is cancelled with
50% probability. Each action has a cost vector [t p e] in terms of
time (t), price (p), and personal effort (e). Task: get to work in
minimal time s.t. price ≤ 15 and effort ≤ 10 over expectation.

s0 s1

s2

g
walk [1 0 1] train [1 10 0]

walk [3 0 6]

run [1 0 20]

taxi [1 30 0]

Optimal stochastic policy: π∗(s0) = {run : 50%, taxi : 50%}
Ctime(π∗) = 1 Cprice(π∗) = 15 Ceffort(π∗) = 10

But individually run and taxi violate the constraints. . .

Optimal deterministic policy: π(s) = walk or train
Ctime(π) = 3 Cprice(π) = 5 Ceffort(π) = 4

More expensive time-wise, but satisfies constraints∗

Solving CSSPs with MIP
Imagine the CSSP as a flow network: actions are pipes, states
are junctions, and we want to route 1L of water through it with
minimal cost. Each xs,a denotes amount of flow through pipe a
from s and ∆s,a = 1/0 if the pipe has/has no flow.

min
x⃗,∆⃗

C0(x⃗) s.t.

out(s)− in(s) = 0 ∀s ∈ S \ (G ∪ {s0})
out(s0)− in(s0) = 1∑
g∈G

in(g) = 1

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s)
Ci(x⃗) ≤ ui ∀i ∈ {1, . . . , n}
xs,a ≤M∆s,a ∀s ∈ S, a ∈ A(s)∑
a∈A(s)

∆s,a ≤ 1 ∀s ∈ S

∆s,a ∈ {0, 1} ∀s ∈ S, a ∈ A(s)
In and out flow from states, and flow cost are macros:

Ci(x⃗) =
∑

s∈S,a∈A(s)

xs,aCi(a)

out(s) =
∑

a∈A(s)

xs,a

in(s) =
∑

s′∈S,a′∈A(s′)

xs,aP (s′|s, a)

Contributions
The Issue with big M
If M is too small. . .

MIP can become infeasible
optimal policy may become infeasible

If M is too big. . .
Numerical instability
May get non-integer solutions (trickle flow)

A General Bound
This always works: M = p

−|S\G|
min

pmin ∈ (0, 1] min. probability in CSSP
S \ G set of non-goal states

That’s impractically big, but can’t do better in general:

s0 s1 s2 s3 g

Finding big M Automatically
New insight: we can relate any feasible solution x⃗ to the
maximum flow over the optimal solution with obj(x⃗) · g−1 ≥
xmax where g = mina∈A C0(a).
Algorithm:

1 select some M
2 try to solve MIP with M

if infeasible: increase M and repeat step 2
if feasible: set M← obj(x⃗) · g−1

3 solve MIP with M
Avoiding big M
Can completely avoid big M with SOS1 constraints. A SOS1
constraint is an ordered set of continuous variables {x0, . . . , xk}
such that at most one variable is allowed to be nonzero.
For us: {xs,a|a ∈ A(s)} for each state s, i.e., at most one action
for A(s) may have nonzero flow. That’s exactly what we want!

New Algorithm for Finding Deterministic Policies
For finding stochastic policies, i2-dual (Trevizan et al. 2017) is
the state-of-the-art. It uses a heuristic to iteratively construct
partial CSSPs, focusing on the promising states. The partial
CSSPs are solved with LPs.
New: we replace i2-dual’s LPs with MIPs. This yields
i2-dual-det, which finds optimal deterministic policies.
Making it faster: we don’t care about the exact solution to
each MIP, so we can approximate them! There are many ways
to do this:

Use LP relaxation
Use constraint generation for integrality constraints
Allow large MIP gap (also makes it anytime)

Interesting Benchmarks and Performance

More Background: Linearisation

A linearisation λ⃗ ∈ Rn+1 relaxes the CSSP into an SSP with
the scalar cost function C ′(a) = λ⃗ · C⃗(a)

λ⃗ = [1 0 · · · 0] is the trivial relaxation that only looks at C0.
Constraint Interestingess
We introduce a new categorisation of CSSPs based on how
interesting their constraints are.

Trivial: if the constraints can be ignored, and the trivial
relaxation yields a feasible policy.
Linearisable: if ∃λ⃗ so that its relaxation yields a feasible
policy.
Interesting: if it is not linearisable.
Practically Interesting: if it is linearisable, but for each
feasible policy there are many infeasible ones.

Constraint Interestingess Visualised

Linearisable Interesting Practically Interesting
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C0
Policy costs w.r.t. C0 and C1. Red line is constraint over C1. Dotted green line is contour line for linearisation.

Points are the costs of deterministic policies. ♦/◦ = feasible / infeasible w.r.t. C2

Very Short Summary of Experimental Results
The existing state-of-the-art, which is based on linearisation, is best on trivial and linearisable problems.
Our algorithm i2-dual-det is best on interesting problems.

More available at schmlz.github.io/det-pi-for-cssp

You can email me at johannes.schmalz@anu.edu.au

https://schmlz.github.io/det-pi-for-cssp/
mailto:johannes.schmalz@anu.edu.au

