	Intro 000000	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments 000	End 00	References
--	-----------------	------------------	----------------------------------	------------------	----------------------------	--------------------	-----------	------------

Finding Optimal Deterministic Policies for Constrained Stochastic Shortest Path Problems

Johannes Schmalz, Felipe Trevizan

Australian National University

October 30, 2024

Intro CSSFS & Policies Deterministic Folicies for CSSFS Heuristic Search Constraint interestingness Experiments End Re 000000 00000000 000000000 0000 0000	Keferences
---	------------

Deterministic Shortest Path Problem

			Goal

Deterministic Shortest Path Problem

Stochastic Shortest Path Problem (SSP)

Windy zones have 50% chance to push ship in direction of arrow.

Stochastic Shortest Path Problem (SSP)

Windy zones have 50% chance to push ship in direction of arrow.

Intro

Windy zones have 50% chance to push ship in direction of arrow.

End

References

Rough waters damage the ship over time, enter these no more than once (over expectation)

Deterministic Policies for CSSPs

Heuristic Search

Constraint Interestingne

Experiments End

References

Graph

Probabilistic PDDL

m	ĿР
Ρ.	

$$\mathsf{SP} \ \mathbb{S} = \langle \mathsf{S}, \mathsf{s}_0, \mathsf{G}, \mathsf{A}, \mathsf{P}, \mathsf{C} \rangle$$

Probability	Tran	sition	Matrix
$ \begin{array}{c} s_{0} \\ s_{0}, a_{0} \\ s_{0}, a_{1} \\ s_{1}, a_{2} \end{array} $	<i>s</i> 1 0.5	g 0.5 0.5 1	

Intro 000000	CSSPs & Policies 0●000000	Deterministic Policies for CSSPs	Heuristic Search 0000	Constraint Interestingness	Experiments 000	End 00	References

Policy

We want Proper Policies

- defined for all reachable states (closed)
- ② leads to goal with probability 1

Cost of a Proper Policy

 $C(\pi)$ is the cost incurred to reach the goal (over expectation)

Optimal Policy

Should be proper and a minimiser of C.

	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments	End	References
000000	0000000	0000000000	0000	00000 -	000	00	

Tuple

 $\mathsf{CSSP}\ \mathbb{C} = \langle \mathsf{S}, \mathsf{s}_0, \mathsf{G}, \mathsf{A}, \mathsf{P}, \vec{\mathsf{C}}, \vec{\mathsf{u}} \rangle$

- *C*₀ is the **primary cost**
- *C_i* are **secondary costs** for

i = 1, 2, ..., n

• u_i is an upper bound on cost function C_i for i = 1, 2, ..., n ntro CSSPs & Policies

Deterministic Policies for CSSPs

Heuristic Search

Constraint Interestingness

Experiments

References

End

Policy

 $u_1 = 1$

Costs of a Proper Policy

 $C_i(\pi)$ is the incurred cost over C_i to reach the goal (over expectation)

Feasible Proper Policy

 π is feasible if $C_i(\pi) \le u_i$ for all secondary costs $i \in \{1, \ldots, n\}$

Optimal Policy

Should be proper and feasible and a minimiser of **primary cost** C_0 .

Costs

$$C_0(\pi^*) = 0.5 \cdot 2 + 0.5 \cdot 1.5 = 1.75$$

 $C_1(\pi^*) = 1$

Why stochastic policies?

Deterministic Policy Costs

- $C(\pi_0) = [2, 0]$
- $C(\pi_1) = [1.5, 2]$

Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness Experiments End References

We can solve CSSPs with Linear Programs (LPs)

Occupation Measure LP (short	chand)
$\min_{\vec{x}} C_0(\vec{x}) \text{ s.t.}$	
$\mathit{out}(s) - \mathit{in}(s) = [s = s_0]$	$\forall \bm{s} \in S \setminus G$
$\sum_{i=1}^{i}$ in(g) $=1$	
$g \in G$	
$x_{s,a} \geq 0$	$\forall s \in S, a \in A(s)$
$C_i(\vec{x}) \leq u_i$	$\forall i \in \{1,\ldots,n\}$

Macros	
• $C_i(\vec{x}) = \sum_{s \in S, a \in A(s)} x_{s,a} C_i(a)$	
• $out(s) = \sum_{a \in A(s)} x_{s,a}$	
• $in(s) = \sum_{s' \in S, a' \in A(s')} X_{s,a} P(s' s,a)$	

Induced Policy

Given
$$\vec{x}$$
, $\pi(s, a) = \frac{x_{s,a}}{in(s)}$

Optimal Solution

$$x_{s_0,a_1} = 0.5, \quad x_{s_1,a_2} = 0.25, \quad x_{s_0,a_0} = 1$$

Occupation Measure LP for our Example

References

$$\begin{split} & \min_{\vec{x}} x_{s_0,a_0} + x_{s_0,a_1} + x_{s_1,a_2} \text{ s.t.} \\ & \vec{x} \ge 0 \\ & \underbrace{x_{s_0,a_0} + x_{s_0,a_1}}_{out(s_0)} - \underbrace{0.5x_{s_0,a_0}}_{in(s_0)} = 1 \\ & \underbrace{x_{s_1,a_2}}_{out(s_1)} - \underbrace{0.5x_{s_0,a_1}}_{in(s_1)} = 0 \\ & \underbrace{0.5x_{s_0,a_0} + 0.5x_{s_0,a_1} + x_{s_1,a_2}}_{in(g)} = 1 \\ & \underbrace{4x_{s_1,a_2}} \le 1 \end{split}$$

Intro	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments	End	References
000000	0000000	0000000000	0000	00000	000	00	

The story so far

- SSPs
- CSSPs
- Deterministic and Stochastic Policies
- LP for solving CSSPs

Intro 000000	CSSPs & Policies	Deterministic Policies for CSSPs •0000000000	Heuristic Search	Constraint Interestingness	Experiments 000	End 00	References

Stochastic Policies for CSSPs

- CSSPs always have an optimal stochastic policy
- finding the cheapest is **P**

Deterministic Policies for CSSPs

- CSSP may not have an optimal deterministic policy
- finding the cheapest is NP

So, who cares about deterministic policies for CSSPs?!

Intro CSSPs & Policies Deterministic Policies for C	SSPs Heuristic Search	Constraint Interestingness	Experiments 000	End 00	References
---	-----------------------	----------------------------	--------------------	-----------	------------

Why do people want deterministic policies for CSSPs?

- ethical issues in medical contexts Roijers et al. (2013)
- aviation regulations Geißer et al. (2020)
- coordination in multi-agent systems Dolgov and Durfee (2005)
- accountability and explainability Hong and Williams (2023)

Intro 000000	CSSPs & Policies 00000000	Deterministic Policies for CSSPs	Heuristic Search 0000	Constraint Interestingness	Experiments 000	End 00	Reference

Occupation Measure MIP (shorthand)

$\min_{\vec{x},\vec{\Delta}} C_0(\vec{x}) \text{ s.t.}$	
$\mathit{out}(s) - \mathit{in}(s) = [s = s_0]$	$\forall \bm{s} \in S \setminus G$
$\sum_{g\inG}\mathit{in}(g)=1$	
$x_{s,a} \geq 0$	$\forall s \in S, a \in A(s)$
$C_i(\vec{x}) \leq u_i$	$\forall i \in \{1,\ldots,n\}$
$x_{s,a} \leq M\Delta_{s,a}$	$\forall s \in S, a \in A(s)$
$\sum_{m{a}\inA(m{s})}\Delta_{m{s},m{a}}\leq 1$	$\forall s \in S$
$\Delta_{s,a} \in \{0,1\}$	$\forall s \in S, a \in A(s)$

000000 0000000 00	00000000	0000	00000	000	00
Example SSP			OM M	11P for our Exam	ple
	$u_1 = 1$		min	$x_{s_0,a_0} + x_{s_0,a_1} + x_{s_0,a_1}$	≪ _{s1,a2} s.t.
	[1,0]	B	$\vec{x} \geq \underbrace{x_{s_0,a_0}}_{a_0}$	$0_{0} + x_{s_{0},a_{1}} - \underbrace{0.5x_{s_{0}}}_{in(s_{0})} - \underbrace{0.5x_{s_{0}}}_{in(s_{0})}$	$(a_0) = 1$
		2[1,4]	$\underbrace{\times_{s_1,a}}_{out(s_1)}$	$\sum_{i=1}^{2} -\underbrace{0.5x_{s_0,a_1}}_{in(s_1)} = 0$,
Optimal Solution			0.5 <i>x</i>	$\frac{x_{s_0,a_0} + 0.5x_{s_0,a_1} + 0.5x_{s_0,a_1}}{x_{s_0,a_1}}$	$x_{s_1,a_2} = 1$
$x_{s_0,a_1} = 0, \ \Delta_{s_0,a_1} = 0,$	$\begin{array}{c} x_{s_1,a_2} = 0, \Rightarrow \\ \Delta_{s_1,a_2} = 0, \Rightarrow \end{array}$	$\overline{\zeta_{s_0,a_0}=2}$ $\Delta_{s_0,a_0}=1$	4 <i>x</i> _{<i>s</i>1} ,	$a_2 \leq 1$	
	-1)-2 /	-0,-0	X_{s_0,a_0}	$_{0}\leq M\Delta_{s_{0},a_{0}}$	
			othe	r indicator const	raints

Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness

Intro CSSPs & Policies Deterministic Policies for CSSPs 0000000 000000000 0000000000000000000	Heuristic Search 0000	Constraint Interestingness	Experiments 000	End 00	References
--	--------------------------	----------------------------	--------------------	-----------	------------

A badly chosen *M* ruins everything!

If M is too small

- can make whole MIP infeasible
- can make optimal policy infeasible

 $\stackrel{\text{\tiny IMP}}{=}$ we had $x_{s_0,a_0}=2$ and $\Delta_{s_0,a_0}=1$ need $x_{s_0,a_0}\leq M\Delta_{s_0,a_0}$

• **"Fun" game:** *Is my MIP infeasible because the model is infeasible or M is too small?*

If M is too big

- less efficient
- can introduce numerical instability
- might allow non-integer solutions (trickle flow) 🖘 catastrophic!

Intro 000000	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments 000	End 00	References

Good news! There's an automatic way to pick M for Constrained <u>MDPs</u>!

000000 0000000 00000000000 0000 0000	Intro 000000	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search 0000	Constraint Interestingness	Experiments 000	End 00	References
---	-----------------	------------------	----------------------------------	--------------------------	----------------------------	--------------------	-----------	------------

Bad news, it doesn't work for Constrained SSPs...

But $|S \setminus G|$ can get very big...

New contribution: algorithm for finding M

Insight

- Suppose we have some feasible policy for \mathbb{C} .
- Its cost must be \geq optimal cost.
- Relation between x_{\max} and cost: $obj(\vec{x}) \cdot \underline{g}^{-1} \ge x_{\max}$

Algorithm for finding M

- \bullet select some M
- **2** try to solve MIP with M
 - if infeasible: increase M_0 and repeat step 2
 - if feasible: set $M \leftarrow \operatorname{obj}(\vec{x}) \cdot \underline{g}^{-1}$

 $\mathbf{3}$ solve MIP with M

Careful: only works if CSSP is feasible.

Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness Experim 000000 000000000000000000000000000000000000	nents End References 00
---	----------------------------

New contribution: avoid *M* completely!

SOS1 ConstraintsSpecify a set of continuous variables $\{x_0, \ldots, x_k\}$.Image: At most one of these is allowed to be non-zero.

So, we want for each $s \in S$ the SOS1 constraint $\{x_{s,a} | a \in A(s)\}$.

SOS1 are a standard feature, but there are some caveats.

Intro CSSPs & Policies De	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments 000	End 00	References
---------------------------	----------------------------------	------------------	----------------------------	--------------------	-----------	------------

The story so far

- Deterministic policies are worse than stochastic ones for CSSPs
- ... but we want them anyways
- we can use MIPs with M
- New: we can automatically derive *M* for CSSPs
- New: we can avoid *M* and use SOS1 constraints

Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search 0000 0000000000000000000000000000000	References
---	------------

We want heuristics!

The LP and MIP consider whole state space.

Let's move away from the dark age of blind search!

Algorithms

- LAny Hong and Williams (2023) (for deterministic policies)
- i²-dual Trevizan, Thiébaux, and Haslum (2017) (for stochastic policies)
- new: i²-dual-det (for deterministic policies)

LAny Hong and Williams (2023)

Step 2

Brute force enumerate deterministic policies until you provably find the optimal one...

i²-dual Trevizan, Thiébaux, and Haslum (2017)

Technique 1: Partial SSPs

Technique 2: Atomic Projections

Embedded in the CSSP LP! See original paper for details.

	Intro 000000	CSSPs & Policies 00000000	Deterministic Policies for CSSPs	Heuristic Search 000●	Constraint Interestingness	Experiments 000	End 00	Reference
--	-----------------	------------------------------	----------------------------------	--------------------------	----------------------------	--------------------	-----------	-----------

New: i²-dual-det

 \square drag and drop results for the MIP for deterministic policies into i²-dual

Teaser: we improve performance by solving intermediate problems partially!

Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness Experiments 000000 000000000 000000000000000000000000000000000000	End 00	References
---	-----------	------------

How interesting are the constraints of a CSSP?

New contribution: we present a simple categorisation!

- trivial
- linearisable
- interesting

Intro	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments	End	References
000000	0000000	0000000000	0000	00000			

Trivial

The constraints can be ignored.

SSP-relaxation gives feasible solution.

00000 0000000 00000000 0000 0000 0000 0000	Intro 000000	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search 0000	Constraint Interestingness	Experiments ●00	End 00	Reference
--	-----------------	------------------	----------------------------------	--------------------------	----------------------------	--------------------	-----------	-----------

Results for optimal planners.

Search And Rescue

		Ν	/IP 1		LAny	i²-	dual-det-M	i²-di	ual-det-SOS1
ſ	problem	cov.	runtime	cov	. runtime	cov.	runtime	cov.	runtime
	(4, F)	0		26	142.3±53.9	15	$753.2{\pm}229.0$	25	$605.8 {\pm} 235.5$
	(4, T)	0		26	179.0 ± 99.7	1	494.3	1	309.0
	(5, F)	0		30	229.2±71.1	5	$264.9{\pm}276.4$	0	
	(5, T)	0		27	249.8±73.8	2	$564.4{\pm}633.4$	0	

Exploding Blocks World

	MIP 1	P1 LAny		i ² -dual-det- <i>M</i>		i ² -dual-det-SOS	
problem	cov. runtime	cov	. runtime	cov.	runtime	cov.	runtime
(4, 5, 0.17)	0	30	$838.5 {\pm} 42.3$	30	77.9 ± 20.2	30	$16.6 {\pm} 0.8$
(4, 5, 0.2)	0	30	0.2	30	$10.6{\pm}1.1$	30	1.6
(5, 7, 0.1)	0	30	$10.9{\pm}0.1$	25	$717.2{\pm}139.3$	30	$19.7 {\pm} 0.2$
(7, 8, 0.48)	0	30	$1.8{\pm}0.1$	27	$559.6{\pm}144.5$	30	$35.3{\pm}2.6$

Looks bad...but these are all linearisable!

Intro 000000	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search 0000	Constraint Interestingness	Experiments 0●0	End 00	References

Elevators

	MIP 1			LAny		-dual-det- <i>M</i>	i ² -dual-det-SOS1		
problem	cov.	runtime	cov	. runtime	cov	. runtime	cov.	runtime	
(1, 2, 2)	30	9.9±3.5	10	13.6 ± 3.2	30	247.6 ± 84.7	30	68.8±42.8	
(2, 1, 1)	30	5.2 ± 0.2	30	9.7±2.3	24	667.2±199.9	30	$118.8 {\pm} 34.5$	
(2, 1, 2)	30	$275.9{\pm}103.9$	29	125.4 ± 17.9	0		0		
(2, 2, 1)	30	$196.2 {\pm} 118.3$	28	$64.5{\pm}12.8$	1	1260.3	8	$527.7 {\pm} 192.1$	

PARC Printer

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N	AIP 1	LAny	i²-c	lual-det- <i>M</i>	i ² -d	ual-det-SOS1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	probl	em cov.	runtime cov	/. runtime	cov.	runtime	cov.	runtime
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, 0	.0, 1) 0	0		30	32.9 ± 5.9	30	$17.0 {\pm} 0.2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, 0	.0, ∞) 0	30	$53.7 {\pm} 0.7$	30	$17.8{\pm}0.1$	30	$16.7 {\pm} 0.1$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, 0	.1, 1) 0	0		30	$69.9{\pm}24.2$	25	$121.6 {\pm} 123.1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 1,	.0, ∞) 0	30	20.7±0.4	0		0	
$(2, 0.0, \infty)$ 0 30 151.6±1.7 30 17.3±0.1 30 16.1±0.2 $(2, 10, \infty)$ 0 30 44 7±0 5 0 0 0	(2, 0	.0, 1) 0	0		30	32.8±6.2	30	$16.7 {\pm} 0.1$
$(2, 10, \infty)$ 0 30 44.7+0.5 0 0	(2, 0	.0, ∞) 0	30	$151.6 {\pm} 1.7$	30	$17.3 {\pm} 0.1$	30	$16.1 {\pm} 0.2$
	(2, 1	.0, ∞) 0	30	44.7±0.5	0		0	

Looks mixed... we have a mix of problem difficulties!

Intro 000000	CSSPs & Policies 00000000	Deterministic Policies for CSSPs	Heuristic Search 0000	Constraint Interestingness	Experiments 00●	End 00	References

Constrained Tireworld

	MIP 1	LAny	i ² -dual-det- <i>M</i>	i ² -dual-det-SOS1
problem	cov. runtime	cov. runtime	cov. runtime	cov. runtime
(4, 4, 2)	30 371.9±58.0	30 349.0±1.4	30 110.6±16.3	30 29.6±2.1
(4, 4, 4)	30 583.4±63.5	0	29 330.4±101.2	30 44.9±2.3
(4, 4, 6)	18 949.4±91.6	0	29 513.9±79.7	30 57.0±2.1
(4, 5, 2)	$14\ 1621.7{\pm}60.6$	0	30 385.9±26.7	30 141.8±14.7
(4, 5, 4)	0	0	27 850.2±108.6	30 205.7±11.7
(4, 5, 6)	0	0	25 1021.1±88.2	30 246.1±15.6
(4, 6, 2)	0	0	0	30 1064.3±102.2
(4, 6, 4)	0	0	0	25 1376.7±96.9
(4, 6, 6)	0	0	0	28 1281.5±81.7

Looks much better... this domain is practically interesting!

Intro C55+5 & Policies Deterministic Policies for C55+5 neutrific Search Constraint interestingness Experiments End Referen 000000 00000000 000000000 0000 0000 0	Intro 000000	CSSPs & Policies 00000000	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments 000	End ●○	Reference
--	-----------------	------------------------------	----------------------------------	------------------	----------------------------	--------------------	-----------	-----------

Summary

- Deterministic policies for CSSPs are required in some cases, even if they are not optimal, and they are harder to find
- We can use MIPs to find deterministic policies, **but there was no automatic way to get** *M*
- New: we present ways to automatically derive M!
- New: i²-dual-det (adapts i²-dual to find deterministic policies)
- New: are CSSP constraints interesting? (trivial, linearisable, interesting)
- i²-dual-det is the state-of-the-art for interesting problems!

More at schmlz.github.io/det-pi-for-cssp

Intro	CSSPs & Policies	Deterministic Policies for CSSPs	Heuristic Search	Constraint Interestingness	Experiments	End	References
000000	0000000	0000000000	0000	00000		$\circ \bullet$	

Bonus Facts

• LAny is very bad on infeasible problems, i²-dual-det is ok

Dolgov, D. A.; and Durfee, E. H. 2005. Stationary Deterministic Policies for Constrained MDPs with Multiple Rewards, Costs, and Discount Factors. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05).

- Geißer, F.; Povéda, G.; Trevizan, F.; Bondouy, M.; Teichteil-Königsbuch, F.; and Thiébaux, S. 2020. Optimal and Heuristic Approaches for Constrained Flight Planning under Weather Uncertainty. *Proceedings of the International Conference on Automated Planning and Scheduling*.
- Hong, S.; and Williams, B. C. 2023. An anytime algorithm for constrained stochastic shortest path problems with deterministic policies. *Artificial Intelligence*.
- Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley, R. 2013. A Survey of Multi-Objective Sequential Decision-Making. *Journal of Artificial Intelligence Research*.
- Trevizan, F.; Thiébaux, S.; and Haslum, P. 2017. Occupation Measure Heuristics for Probabilistic Planning. In *Proc. of 27th Int. Conf. on Automated Planning and Scheduling (ICAPS)*.