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Stochastic Shortest Path Problem (SSP)

Goal

Windy zones have 50% chance to
push ship in direction of arrow.
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Constrained SSP (CSSP)

Goal

Windy zones have 50% chance to
push ship in direction of arrow.

Rough waters damage the ship
over time, enter these no more
than once (over expectation)
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Constrained SSP (CSSP)

Goal

Windy zones have 50% chance to
push ship in direction of arrow.

Rough waters damage the ship
over time, enter these no more
than once (over expectation)
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Probabilistic PDDL
(:action move-ship
:parameters(...) :precondition(...)
:effect(probabilistic 0.5 (...)

0.5 (...)))

Tuple
SSP S = ⟨S, s0, G, A, P, C⟩

Probability Transition Matrix


s0 s1 g

s0, a0 0.5 0.5
s0, a1 0.5 0.5
s1, a2 1
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Policy
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We want Proper Policies
1 defined for all reachable states (closed)
2 leads to goal with probability 1

Cost of a Proper Policy
C(π) is the cost incurred to reach the goal
(over expectation)

Optimal Policy
Should be proper and a minimiser of C .
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Tuple

CSSP C = ⟨S, s0, G, A, P, C⃗ , u⃗⟩
• C0 is the primary cost
• Ci are secondary costs for

i = 1, 2, . . . , n
• ui is an upper bound on cost

function Ci for i = 1, 2, . . . , n
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Policy
u1 = 1

s0

s1

g
a0

[1, 0]

a1
[1, 0]

a2
[1, 4]

π∗(s0, a0) = 0.5 = π∗(s0, a1)

Costs
C0(π∗) = 0.5 · 2 + 0.5 · 1.5 = 1.75

C1(π∗) = 1

Costs of a Proper Policy
Ci(π) is the incurred cost over Ci to reach
the goal (over expectation)

Feasible Proper Policy
π is feasible if Ci(π) ≤ ui for all secondary
costs i ∈ {1, . . . , n}

Optimal Policy
Should be proper and feasible and a
minimiser of primary cost C0.
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Why stochastic policies?

Deterministic Policy Costs
• C(π0) = [2, 0]

• C(π1) = [1.5, 2]

CSSP
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Cost Plot
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We can solve CSSPs with Linear Programs (LPs)

Occupation Measure LP (shorthand)

min
x⃗

C0(x⃗) s.t.

out(s)− in(s) = [s = s0] ∀s ∈ S \ G∑
g∈G

in(g) = 1

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s)
Ci(x⃗) ≤ ui ∀i ∈ {1, . . . , n}

Macros

• Ci(x⃗) =
∑

s∈S,a∈A(s)
xs,aCi(a)

• out(s) =
∑

a∈A(s)
xs,a

• in(s) =
∑

s′∈S,a′∈A(s′)
xs,aP(s ′|s, a)

Induced Policy
Given x⃗ , π(s, a) = xs,a

in(s)
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Example CSSP
u1 = 1
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Optimal Solution
xs0,a1 = 0.5, xs1,a2 = 0.25, xs0,a0 = 1

Occupation Measure LP for our
Example

min
x⃗

xs0,a0 + xs0,a1 + xs1,a2 s.t.

x⃗ ≥ 0
xs0,a0 + xs0,a1︸ ︷︷ ︸

out(s0)

− 0.5xs0,a0︸ ︷︷ ︸
in(s0)

= 1

xs1,a2︸ ︷︷ ︸
out(s1)

− 0.5xs0,a1︸ ︷︷ ︸
in(s1)

= 0

0.5xs0,a0 + 0.5xs0,a1 + xs1,a2︸ ︷︷ ︸
in(g)

= 1

4xs1,a2 ≤ 1
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The story so far
• SSPs
• CSSPs
• Deterministic and Stochastic Policies
• LP for solving CSSPs
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Stochastic Policies for CSSPs
• CSSPs always have an

optimal stochastic policy
• finding the cheapest is P

Deterministic Policies for CSSPs
• CSSP may not have an

optimal deterministic policy
• finding the cheapest is NP

So, who cares about deterministic policies for CSSPs?!
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Why do people want deterministic policies for CSSPs?

• ethical issues in medical contexts Roijers et al. (2013)

• aviation regulations Geißer et al. (2020)

• coordination in multi-agent systems Dolgov and Durfee (2005)

• accountability and explainability Hong and Williams (2023)
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Occupation Measure MIP (shorthand)

min
x⃗ ,∆⃗

C0(x⃗) s.t.

out(s)− in(s) = [s = s0] ∀s ∈ S \ G∑
g∈G

in(g) = 1

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s)
Ci(x⃗) ≤ ui ∀i ∈ {1, . . . , n}
xs,a ≤ M∆s,a ∀s ∈ S, a ∈ A(s)∑
a∈A(s)

∆s,a ≤ 1 ∀s ∈ S

∆s,a ∈ {0, 1} ∀s ∈ S, a ∈ A(s)
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Example SSP
u1 = 1

s0

s1

g
a0

[1, 0]

a1
[1, 0]

a2
[1, 4]

Optimal Solution
xs0,a1 = 0, xs1,a2 = 0, xs0,a0 = 2

∆s0,a1 = 0, ∆s1,a2 = 0, ∆s0,a0 = 1

OM MIP for our Example

min
x⃗

xs0,a0 + xs0,a1 + xs1,a2 s.t.

x⃗ ≥ 0
xs0,a0 + xs0,a1︸ ︷︷ ︸

out(s0)

− 0.5xs0,a0︸ ︷︷ ︸
in(s0)

= 1

xs1,a2︸ ︷︷ ︸
out(s1)

− 0.5xs0,a1︸ ︷︷ ︸
in(s1)

= 0

0.5xs0,a0 + 0.5xs0,a1 + xs1,a2︸ ︷︷ ︸
in(g)

= 1

4xs1,a2 ≤ 1
xs0,a0 ≤ M∆s0,a0

other indicator constraints
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A badly chosen M ruins everything!

If M is too small
• can make whole MIP infeasible
• can make optimal policy infeasible

� we had xs0,a0 = 2 and ∆s0,a0 = 1 need xs0,a0 ≤ M∆s0,a0

• “Fun” game: Is my MIP infeasible because the model is infeasible or M is too
small?

If M is too big
• less efficient
• can introduce numerical instability
• might allow non-integer solutions (trickle flow) � catastrophic!



Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness Experiments End References

Good news! There’s an automatic way to pick M for Constrained MDPs!

LP to find M

max
x⃗

∑
s∈S,a∈A(s)

xs,a s.t.

out(s)− in(s) = [s = s0] ∀s ∈ S \ G∑
g∈G

in(g) = 1

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s)
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Bad news, it doesn’t work for Constrained SSPs...

Counterexample

s2 s0 g
aga1

a2

A solution: xs0,ag = 1 xs0,a1 = 1 xs2,a2 = 1
Another solution: xs0,ag = 1 xs0,a1 = 10 xs2,a2 = 10

...
...

...
...
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New contribution: p−|S\G|
min ≥ xmax

Proof Idea

Consider a trajectory from s to a goal. Its probability must be ≥ p|S\G|
min . So, if there

was xmax > p−|S\G|
min , then more than a unit of flow reaches the goals!

It’s tight

Backwards chaining SSP has xmax = p−|S\G|
min

s0 s1 s2 s3 g

But |S \ G| can get very big. . .
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New contribution: algorithm for finding M

Insight
• Suppose we have some feasible policy for C.
• Its cost must be ≥ optimal cost.
• Relation between xmax and cost: obj(x⃗) · g−1 ≥ xmax

Algorithm for finding M
1 select some M
2 try to solve MIP with M

• if infeasible: increase M0 and repeat step 2
• if feasible: set M ← obj(x⃗) · g−1

3 solve MIP with M

Careful: only works if CSSP is feasible.
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New contribution: avoid M completely!

SOS1 Constraints
Specify a set of continuous variables {x0, . . . , xk}.

� At most one of these is allowed to be non-zero.

So, we want for each s ∈ S the SOS1 constraint {xs,a|a ∈ A(s)}.

SOS1 are a standard feature, but there are some caveats.
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The story so far
• Deterministic policies are worse than stochastic ones for CSSPs
• . . . but we want them anyways
• we can use MIPs with M
• New: we can automatically derive M for CSSPs
• New: we can avoid M and use SOS1 constraints
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We want heuristics!
Blind Search
The LP and MIP consider whole state space.

Let’s move away from the dark age of blind search!

Algorithms
• LAny Hong and Williams (2023) (for deterministic policies)
• i2-dual Trevizan, Thiébaux, and Haslum (2017) (for stochastic policies)
• new: i2-dual-det (for deterministic policies)
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LAny Hong and Williams (2023)

Step 1
Solve the MIP’s Lagrangian dual by solving a sequence of linearised SSPs.
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Step 2
Brute force enumerate deterministic policies until you provably find the optimal one. . .
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i2-dual Trevizan, Thiébaux, and Haslum (2017)

Technique 1: Partial SSPs
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Technique 2: Atomic Projections
Embedded in the CSSP LP! See original paper for details.
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New: i2-dual-det
� drag and drop results for the MIP for deterministic policies into i2-dual

Teaser: we improve performance by solving intermediate problems partially!
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How interesting are the constraints of a CSSP?

New contribution: we present a simple categorisation!

• trivial

• linearisable

• interesting



Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness Experiments End References

Trivial
The constraints can be ignored.

� SSP-relaxation gives feasible solution.
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Linearisable
There is some λ so that π∗ for λ-SSP is feasible.

C1
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C0
♦/◦ = feasible / infeasible w.r.t. C2
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Interesting
Not linearisable.

C1
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C0
♦/◦ = feasible / infeasible w.r.t. C2
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Practically Interesting (Unofficial)
Linearisable, but often behaves like interesting.

C1
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C0
♦/◦ = feasible / infeasible w.r.t. C2
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Results for optimal planners.

Search And Rescue
MIP 1 LAny i2-dual-det-M i2-dual-det-SOS1

problem cov. runtime cov. runtime cov. runtime cov. runtime
(4, F) 0 26 142.3±53.9 15 753.2±229.0 25 605.8±235.5
(4, T) 0 26 179.0±99.7 1 494.3 1 309.0
(5, F) 0 30 229.2±71.1 5 264.9±276.4 0
(5, T) 0 27 249.8±73.8 2 564.4±633.4 0

Exploding Blocks World
MIP 1 LAny i2-dual-det-M i2-dual-det-SOS1

problem cov. runtime cov. runtime cov. runtime cov. runtime
(4, 5, 0.17) 0 30 838.5±42.3 30 77.9±20.2 30 16.6±0.8
(4, 5, 0.2) 0 30 0.2 30 10.6±1.1 30 1.6
(5, 7, 0.1) 0 30 10.9±0.1 25 717.2±139.3 30 19.7±0.2
(7, 8, 0.48) 0 30 1.8±0.1 27 559.6±144.5 30 35.3±2.6

Looks bad. . . but these are all linearisable!
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Elevators
MIP 1 LAny i2-dual-det-M i2-dual-det-SOS1

problem cov. runtime cov. runtime cov. runtime cov. runtime
(1, 2, 2) 30 9.9±3.5 10 13.6±3.2 30 247.6±84.7 30 68.8±42.8
(2, 1, 1) 30 5.2±0.2 30 9.7±2.3 24 667.2±199.9 30 118.8±34.5
(2, 1, 2) 30 275.9±103.9 29 125.4±17.9 0 0
(2, 2, 1) 30 196.2±118.3 28 64.5±12.8 1 1260.3 8 527.7±192.1

PARC Printer
MIP 1 LAny i2-dual-det-M i2-dual-det-SOS1

problem cov. runtime cov. runtime cov. runtime cov. runtime
(1, 0.0, 1) 0 0 30 32.9±5.9 30 17.0±0.2
(1, 0.0, ∞) 0 30 53.7±0.7 30 17.8±0.1 30 16.7±0.1
(1, 0.1, 1) 0 0 30 69.9±24.2 25 121.6±123.1
(1, 1.0, ∞) 0 30 20.7±0.4 0 0
(2, 0.0, 1) 0 0 30 32.8±6.2 30 16.7±0.1
(2, 0.0, ∞) 0 30 151.6±1.7 30 17.3±0.1 30 16.1±0.2
(2, 1.0, ∞) 0 30 44.7±0.5 0 0

Looks mixed. . . we have a mix of problem difficulties!



Intro CSSPs & Policies Deterministic Policies for CSSPs Heuristic Search Constraint Interestingness Experiments End References

Constrained Tireworld
MIP 1 LAny i2-dual-det-M i2-dual-det-SOS1

problem cov. runtime cov. runtime cov. runtime cov. runtime
(4, 4, 2) 30 371.9±58.0 30 349.0±1.4 30 110.6±16.3 30 29.6±2.1
(4, 4, 4) 30 583.4±63.5 0 29 330.4±101.2 30 44.9±2.3
(4, 4, 6) 18 949.4±91.6 0 29 513.9±79.7 30 57.0±2.1
(4, 5, 2) 14 1621.7±60.6 0 30 385.9±26.7 30 141.8±14.7
(4, 5, 4) 0 0 27 850.2±108.6 30 205.7±11.7
(4, 5, 6) 0 0 25 1021.1±88.2 30 246.1±15.6
(4, 6, 2) 0 0 0 30 1064.3±102.2
(4, 6, 4) 0 0 0 25 1376.7±96.9
(4, 6, 6) 0 0 0 28 1281.5±81.7

Looks much better. . . this domain is practically interesting!
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Summary
• Deterministic policies for CSSPs are required in some cases, even if they are not

optimal, and they are harder to find
• We can use MIPs to find deterministic policies, but there was no automatic

way to get M
• New: we present ways to automatically derive M!
• New: i2-dual-det (adapts i2-dual to find deterministic policies)
• New: are CSSP constraints interesting? (trivial, linearisable, interesting)
• i2-dual-det is the state-of-the-art for interesting problems!

More at schmlz.github.io/det-pi-for-cssp

https://schmlz.github.io/det-pi-for-cssp/
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Bonus Facts
• LAny is very bad on infeasible problems, i2-dual-det is ok
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