# Finding Plans and Heuristics with Spectral Graph Theory

### Johannes Schmalz<sup>1,2\*</sup>

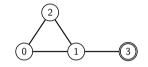
<sup>1</sup> Universität des Saarlandes <sup>2</sup> Australian National University

16<sup>th</sup> July AmsterCAPS 2025





## Undirected Simple Graphs + Goal $G = \langle V, E, g \rangle$



### Matrices for the Graph

Adjacency 
$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

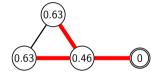
$$Degree D = \begin{bmatrix} 3 & & & \\ & 2 & & \\ & & 1 \end{bmatrix}$$
Laplacian  $L = D - A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & -1 & -1 & \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & \\ 3 & & & & & \end{bmatrix}$ 
Dirichlet  $L_g = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & -1 & -1 & \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & \\ 3 & & & & & \end{bmatrix}$ 

Dirichlet 
$$L_g = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ 2 & -1 & -1 & 2 \\ 3 & 1 & 1 \end{bmatrix}$$

1. Compute eigenvector  $\mathbf{v} \in \mathbb{R}^{|V|-1}$  such that

$$L_g \mathbf{v} = \lambda_0 \mathbf{v}$$

- 2. Use  $v_i$  as heuristic for vertex i
- 3. Follow greedily

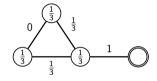


#### This will reach the goal!

their proof "follows classical arguments from the continuous setting"

Looks like Operator Counting Net-change Heuristic LP

$$\min_{\mathbf{x}} \sum_{\langle i,j \rangle \in E} x_{i,j}$$
 st.  $out(i) - in(i) = \alpha(i) \quad \forall i \in V \setminus \{g\}$   $in(g) = 1$   $x_{i,j} \geq 0 \quad \forall \langle i,j \rangle \in E$ 



Feasible solution induces proper policy (reaches goal with probability 1) [Puterman, 2005]

For us feasible solution induces plans

#### Theorem

v is a feasible solution for the OM LP.

#### Proof.

Sketch.  $L_g \mathbf{v} \in \mathbb{R}^{|V \setminus \{g\}|}$  such that

$$(L_{g}\mathbf{v})_{i} = \underbrace{\sum_{\substack{\langle i,j \rangle \in E \\ i \prec j}} \underbrace{v_{i} - v_{j}}_{out(i)} - \underbrace{\sum_{\substack{\langle i,j \rangle \in E \\ j \prec i}} \underbrace{v_{j} - v_{i}}_{x_{j,i}} = \underbrace{\lambda_{0}v_{i}}_{\alpha(i)}}_{\alpha(i)}$$

### Corollary

By following  $\mathbf{v}$  greedily you follow a proper policy and are guaranteed to reach the goal.

Let 
$$h(i) = \kappa v_i$$
 s.t.  $\kappa \Big( v_i - v_j \Big) \le 1 \quad orall \langle i,j 
angle \in E$  Note  $\kappa \ge 1$ 

#### **Theorem**

h satisfies

$$h(i) \le 1 + h(j) \quad \forall \langle i, j \rangle \in E$$
  
 $h(g) = 0$ 

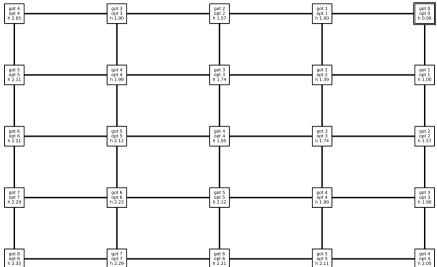
#### Proof.

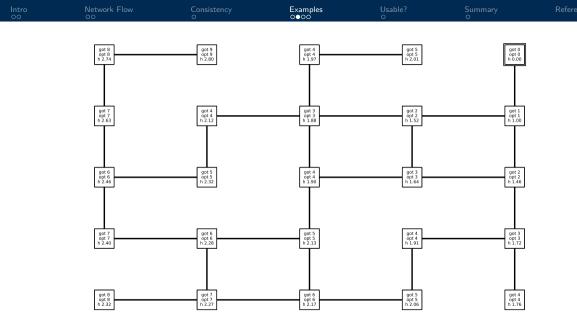
Sketch.

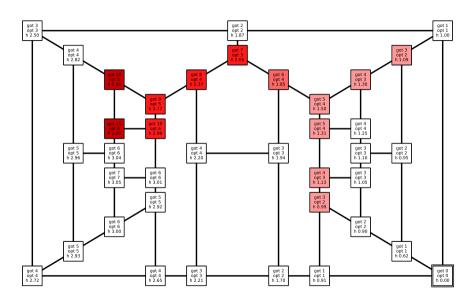
$$h(i) = \kappa v_i = \kappa (v_i - v_j) + \kappa v_j \le 1 + h(j)$$

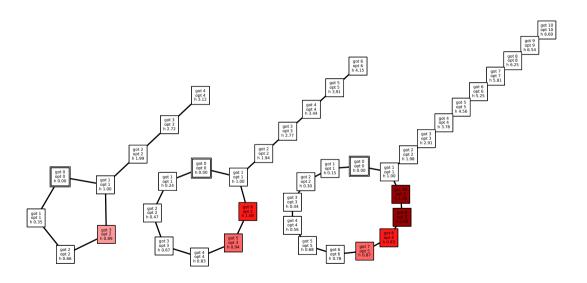
## Corollary

h is a consistent, goal-aware heuristic. [Pommerening et al., 2015]



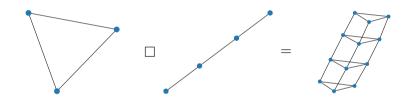






Getting transition system's matrix and finding an eigenvector is not realistic. . .

### **Graph Operations that Preserve Eigenvectors**



if G has eigenvectors  $\mathbf{x}_1, \dots \mathbf{x}_m$  and H has eigenvectors  $\mathbf{y}_1, \dots \mathbf{y}_m$  then  $G \square H$  has eigenvectors  $\mathbf{x}_i \otimes \mathbf{y}_i$  for each i, j

But □ does not give us much power...

#### Summary

- 1 We can find plans with the spectral method
- 2 This works because it finds a feasible solution to the Occupation Measure LP
- 3 The eigenvector also induces a consistent, goal-aware heuristic
- 4 Steinerberger [2021] suggests sticking with Dijkstra for now. . .

#### What's Next?

Would be nice to find a way to combine graphs that approximately preserves the required eigenvector. . .

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015. From Non-Negative to General Operator Cost Partitioning. *Proc. of AAAI Conf. on Artificial Intelligence*, 3335–3341.

Puterman, M. L. 2005. Markov Decision Processes. Wiley-Interscience.

Steinerberger, S. 2021. A spectral approach to the shortest path problem. *Linear Algebra and its Applications*, 620: 182–200.