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Connected Undirected Simple Graphs + Goal G = (V E, g)
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Spectral Algorithm for Finding Plans [Steinerberger, 2021]

1. Compute eigenvector v € R!VI=1 such that
Lgv = Agv

2. Treat v; as heuristic for vertex i @

BZ"  this heuristic is descending

Vie V\{g}3(i,j) € Est. v <y @ @

3. Follow greedily

I&"  guaranteed to reach the goal
[Seipp et al., 2016]

Steinerberger’s proof “follows classical arguments from the continuous setting”



Network Flow
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Eigenvector describes feasible flow
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It is a Solution to the Occupation Measure LP

Looks like Operator Counting Net-change Heuristic LP

Feasible solution induces proper policy (reaches goal with probability 1)
[Puterman, 2005]

For us B feasible solution induces plans



Network Flow
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v is a feasible solution for the OM LP.

Sketch. Lgv € RIVM&H such that

ZV’_VJ Z\/J—v,—)\ov,
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visy i vj>V, i

out (i) in(7)

By following v greedily you follow a proper policy and are guaranteed to reach the goal




Consistency
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Eigenvector is a consistent, goal-aware heuristic



Consistency
oe

s.t. n(v; — vj) <1 V{(i,j)eE Note k > 1

h satisfies h(i) < 1+ h(j) Y(ij)€E
h(g) =0

| A\

Sketch.
e h(i) = kvi = (v — ;) + Kv; < 1+ h(j)

h is a consistent, goal-aware heuristic. [Pommerening et al., 2015]




Difference of Squares
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Eigenvector minimises difference of squares



Difference of Squares
oe

Finding the eigenvector

argminx’ Lyx s.t. |[x|| =1
x#0

xTLgx = Z (xi — x)?
(ij)eE
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[ Jelele]
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Usable?
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Getting transition system’s matrix and finding an eigenvector is not realistic. ..

Cartesian Product for Graphs

Easy to compute eigenvectors for GLIH if we know G and H

Compare to synch. product: V(GOH) = V(G) x V(H) = V(G ® H)
O, .G ... ) A .. .. .G .. 4 H.
(i,i") ~ (j,j) <= (i ~jni" =)W ="~ ]) (i, i) 2 G,j) <= i~ jni’ X

[] does not give us much power. ..



Intro Network Flow

Possible Connections

Finding the eigenvector

Connections Summary
° °)

argminx’ Lyx s.t. x| =1
x#0

xTLgx = Z (xi — x)?
(iJ)eE

Potential Heuristics

max objective s.t.
xg <0
xj — xj < cost(i — j)

[Pommerening et al., 2015]

Cloth Simulation

Hooke's Law for Elastic
Potential

1
u(o) = 5/«52

e.g. [Miller et al., 2008]

Reinforcement Learning

Unconstr. Generalised Graph
Drawing Objective (1d)

min c,-uTLu. ..
ueR

e.g. [Gomez, Bowling, and
Machado, 2024]
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Summary
® Can find plans with the spectral method
® Can think of it as flow (Occupation Measure LP)
© The eigenvector also induces a consistent, goal-aware heuristic

O Steinerberger suggests sticking with Dijkstra for now. . .
What's Next?

e A more powerful graph operation that preserves first eigenvector?
® Explore the connections

schmlz.github.io



schmlz.github.io
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