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Connected Undirected Simple Graphs + Goal G = ⟨V , E , g⟩
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Matrices for the Graph

Adjacency A =


0 1 2 3

0 1 1
1 1 1 1
2 1 1
3 1

 Degree D =


0 1 2 3

2
3

2
1



Laplacian L = D − A =


0 1 2 3

0 2 −1 −1
1 −1 3 −1 −1
2 −1 −1 2
3 −1 1

 Dirichlet Lg =


0 1 2 3

0 2 −1 −1
1 −1 3 −1 −1
2 −1 −1 2
3 −1 1


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Spectral Algorithm for Finding Plans [Steinerberger, 2021]

1. Compute eigenvector v ∈ R|V |−1 such that

Lgv = λ0v

2. Treat vi as heuristic for vertex i

� this heuristic is descending
∀i ∈ V \ {g} ∃⟨i , j⟩ ∈ E s.t. vj < vi

3. Follow greedily

� guaranteed to reach the goal
[Seipp et al., 2016]
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Steinerberger’s proof “follows classical arguments from the continuous setting”
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Eigenvector describes feasible flow
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It is a Solution to the Occupation Measure LP
Looks like Operator Counting Net-change Heuristic LP

min
x

∑
⟨i ,j⟩∈E

xi ,j s.t.

out(i) − in(i) = α(i) ∀i ∈ V \ {g}
in(g) = 1
xi ,j ≥ 0 ∀⟨i , j⟩ ∈ E
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Feasible solution induces proper policy (reaches goal with probability 1)
[Puterman, 2005]

For us � feasible solution induces plans
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Theorem
v is a feasible solution for the OM LP.

Proof.
Sketch. Lgv ∈ R|V \{g}| such that

(Lgv)i =
∑

⟨i ,j⟩∈E
vi >vj

vi − vj︸ ︷︷ ︸
xi,j︸ ︷︷ ︸

out(i)

−
∑

⟨j,i⟩∈E
vj >vi

vj − vi︸ ︷︷ ︸
xj,i︸ ︷︷ ︸

in(i)

= λ0vi︸︷︷︸
α(i)

Corollary
By following v greedily you follow a proper policy and are guaranteed to reach the goal.
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Eigenvector is a consistent, goal-aware heuristic
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Heuristic h(i) = κvi

s.t. κ
(
vi − vj

)
≤ 1 ∀⟨i , j⟩ ∈ E Note κ ≥ 1

Theorem
h satisfies h(i) ≤ 1 + h(j) ∀⟨i , j⟩ ∈ E

h(g) = 0

Proof.
Sketch.

h(i) = κvi = κ(vi − vj) + κvj ≤ 1 + h(j)

Corollary
h is a consistent, goal-aware heuristic. [Pommerening et al., 2015]
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Eigenvector minimises difference of squares
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Finding the eigenvector

argmin
x ̸=0

xT Lgx s.t. ∥x∥ = 1

xT Lgx =
∑

⟨i ,j⟩∈E
(xi − xj)2
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Getting transition system’s matrix and finding an eigenvector is not realistic. . .

Cartesian Product for Graphs

□ =

Easy to compute eigenvectors for G□H if we know G and H

Compare to synch. product: V (G□H) = V (G) × V (H) = V (G ⊗ H)

(i , i ′) □∼ (j , j ′) ⇐⇒ (i G∼ j∧i ′ = j ′)∨(i = j∧i ′ H∼ j ′) (i , i ′) ⊗∼ (j , j ′) ⇐⇒ i G∼ j∧i ′ H∼ j ′

□ does not give us much power. . .
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Possible Connections

Finding the eigenvector

argmin
x ̸=0

xT Lgx s.t. ∥x∥ = 1

xT Lgx =
∑

⟨i ,j⟩∈E
(xi − xj)2

Potential Heuristics

max objective s.t.
xg ≤ 0
xi − xj ≤ cost(i → j)

[Pommerening et al., 2015]

Cloth Simulation
Hooke’s Law for Elastic
Potential

U(δ) = 1
2kδ2

e.g. [Müller et al., 2008]

Reinforcement Learning
Unconstr. Generalised Graph
Drawing Objective (1d)

min
u∈R

ciuT Lu . . .

e.g. [Gomez, Bowling, and
Machado, 2024]
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Summary

1 Can find plans with the spectral method

2 Can think of it as flow (Occupation Measure LP)

3 The eigenvector also induces a consistent, goal-aware heuristic

4 Steinerberger suggests sticking with Dijkstra for now. . .

What’s Next?

• A more powerful graph operation that preserves first eigenvector?
• Explore the connections

schmlz.github.io

schmlz.github.io
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